Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Chromatogr A ; 1591: 138-146, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30686646

RESUMEN

The ultimate purpose of this research work is to get an insight into the incomplete elution of heavy n-alkanes which along with thermal cracking, is one of the two main factors questioning the reliability of High Temperature Gas Chromatography (HTGC) analysis of heavy oils. For this purpose, knowledge of how the Distribution Factors vary with temperature is an essential requirement in the GC modelling. This study provides an extension of the data set of distribution factors for n-alkanes up to nC98H198 in a HT5 GC column over the temperature range 10 °C-430 °C, and introduces a method to determine the distribution coefficient of heavy n-alkanes by using two complimentary HTGC modes: i.) High-Efficiency mode, for efficient resolution with a long column operated at low flow rate with n-alkanes elution rate up to nC64, and ii.) true SimDist mode, with a short column operated at high flow rate for inefficient resolution with n-alkanes elution rate up to nC100. Furthermore, this study demonstrates the use of the in-house obtained distribution factors as the main input in the in-house GC model for the prediction of the retention times. Its validation has been carried out using distribution factors obtained at both constant flow rate and constant inlet pressure operating conditions, with an average relative error in the GC modelling at the same operating conditions of 4.4% for the former and 1.5% for the latter. This new extension of the data set of heavy n-alkanes distribution factors provides the basis for studying the partitioning and incomplete elution of heavy n-alkanes in HTGC analysis. Also, these new distribution factors can be used as input in GC modelling, to determine the optimum analytical conditions to improve the separation process and thus the HTGC practices.


Asunto(s)
Alcanos/química , Cromatografía de Gases/métodos , Calor , Presión , Reproducibilidad de los Resultados , Reología , Factores de Tiempo
2.
ACS Omega ; 4(19): 18210-18218, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31720522

RESUMEN

Gas-hydrate formation has numerous potential applications in the fields of water desalination, capturing greenhouse gases, and energy storage. Hydrogen bonds between water and guest gas are essential for hydrates to form, and their presence in any system is greatly influenced by the presence of either electrolytes or inhibitors in the liquid or impurities in the gas phase. This study considers CH4 as a gaseous impurity in the gas stream employed to form hydrates. In developing gas-hydrate formation processes to serve multiple purposes, CO2 hydrate formation experiments were conducted in the presence of another hydrate-forming gas, CH4, at low concentrations in saline water. These experiments were conducted in both batch and stirred tank reactors in the presence of sodium dodecyl sulfate (SDS) as a kinetic additive at 3.5 MPa and 274.15 K, under isobaric and isothermal conditions. Gas loading was taken as the detection criterion for hydrate formation. It was observed that overall gas loading was hindered by more than 70% with the addition of salts after 2 days. The addition of CH4 to the gas stream led to a further reduction of approximately 30% of gas loading in the batch reactor under quiescent conditions. However, the addition of 100 ppm of SDS improved the gas loading by recovering 34% of the loss observed in volumetric gas loading through the addition of salts and CH4. The introduction of stirring improved the gas loading, and 64% of the loss was recovered through the addition of salts and CH4 after 34 h. The investigation was continued further by substituting CH4 with N2, whereupon accelerated hydrate formation was observed.

3.
Adv Mater ; 31(23): e1807334, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30985035

RESUMEN

The first experimental evidence for a giant, conventional barocaloric effect (BCE) associated with a pressure-driven spin crossover transition near room temperature is provided. Magnetometry, neutron scattering, and calorimetry are used to explore the pressure dependence of the SCO phase transition in polycrystalline samples of protonated and partially deuterated [FeL2 ][BF4 ]2 [L = 2,6-di(pyrazol-1-yl)pyridine] at applied pressures of up to 120 MPa (1200 bar). The data indicate that, for a pressure change of only 0-300 bar (0-30 MPa), an adiabatic temperature change of 3 K is observed at 262 K or 257 K in the protonated and deuterated materials, respectively. This BCE is equivalent to the magnetocaloric effect (MCE) observed in gadolinium in a magnetic field change of 0-1 Tesla. The work confirms recent predictions that giant, conventional BCEs will be found in a wide range of SCO compounds.

4.
Environ Sci Technol ; 44(4): 1509-14, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20085250

RESUMEN

Subsurface storage of carbon dioxide (CO(2)) is regarded as a short to medium term solution for reducing greenhouse gas emissions. However, there are concerns with respect to the integrity of seals in subsurface storage of CO(2) and the risks associated with leakage to ocean and atmosphere. In this paper, we report the results of experimental laboratory simulation of CO(2) leakage from subsurface storage sites and the self-sealing mechanism of CO(2) hydrates in subsea sediments, using an experimental setup specifically constructed for this work. The results demonstrate that the sequestrated CO(2) migrated upward and formed hydrates with the pore water in the sediment when the pressure and temperature conditions in the sediments were inside the hydrate stability zone. The CO(2) hydrate formation slowed down the CO(2) diffusion rate by several times to 3 orders of magnitude. The upward migrating CO(2) tended to form hydrate at the base of the hydrate stability zone. On the geological time scale the CO(2) hydrate formation could create a low-permeability secondary cap layer which greatly restricts further upward CO(2) flow, should a leakage occurs. This potential "self-sealing" and "self-healing" process could be an important criterion in the selection of suitable sites for geological storage of CO(2).


Asunto(s)
Dióxido de Carbono/química , Sedimentos Geológicos/química , Efecto Invernadero/prevención & control , Temperatura
5.
Langmuir ; 23(6): 3440-4, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17286423

RESUMEN

Experimentally determined equilibrium phase relations are reported for the system H2-THF-H2O as a function of aqueous tetrahydrofuran (THF) concentration from 260 to 290 K at pressures up to 45 MPa. Data are consistent with the formation of cubic structure-II (CS-II) binary H2-THF clathrate hydrates with a stoichiometric THF-to-water ratio of 1:17, which can incorporate modest volumes of molecular hydrogen at elevated pressures. Direct compositional analyses of the clathrate phase, at both low (0.20 mol %) and stoichiometric (5.56 mol %) initial THF aqueous concentrations, are consistent with observed phase behavior, suggesting full occupancy of large hexakaidecahedral (51264) clathrate cavities by THF, coupled with largely complete (80-90%) filling of small dodecahedral (512) cages by single H2 molecules at pressures of >30 MPa, giving a clathrate formula of (H2) < or =2.THF.17H2O. Results should help to resolve the current controversy over binary H2-THF hydrate hydrogen contents; data confirm recent reports that suggest a maximum of approximately 1 mass % H2, this contradicting values of up to 4 mass % previously claimed for comparable conditions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda