Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biol Lett ; 19(2): 20220441, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36815586

RESUMEN

Most small rodent species display cyclic fluctuations in their population density. The mechanisms behind these cyclical variations are not yet clearly understood. Density-dependent effects on reproductive function could affect these population variations. The fossorial water vole ecotype, Arvicola terrestris, exhibits multi-year cyclical dynamics with outbreak peaks. Here, we monitored different water vole populations over 3 years, in spring and autumn, to evaluate whether population density is related to male reproductive physiology. Our results show an effect of season and inter-annual factors on testis mass, plasmatic testosterone level, and androgen-dependent seminal vesicle mass. By contrast, population density does not affect any of these parameters, suggesting a lack of modulation of population dynamics by population density.


Asunto(s)
Arvicolinae , Animales , Masculino , Densidad de Población , Estaciones del Año , Dinámica Poblacional , Arvicolinae/fisiología
2.
Emerg Infect Dis ; 28(12): 2577-2580, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36322954

RESUMEN

We report results from serologic surveillance for exposure to SARS-CoV-2 among 1,237 wild rodents and small mammals across Europe. All samples were negative, with the possible exception of 1. Despite suspected potential for human-to-rodent spillover, no evidence of widespread SARS-CoV-2 circulation in rodent populations has been reported to date.Esitämme tulokset serologisesta tutkimuksesta, jossa seulottiin SARS-CoV-2 tartuntojen varalta 1,237 luonnonvaraista jyrsijää ja piennisäkästä eri puolilta Eurooppaa. Kaikki näytteet olivat negatiivisia, yhtä näytettä lukuun ottamatta. SARS-CoV-2:n läikkymisen ihmisistä jyrsijöihin on arveltu olevan mahdollista, mutta todisteet viruksen laajamittaisesta leviämisestä jyrsijäpopulaatioissa puuttuvat.


Asunto(s)
COVID-19 , Animales , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Roedores , Anticuerpos Antivirales , Europa (Continente)/epidemiología
3.
J Evol Biol ; 34(7): 1156-1166, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34062025

RESUMEN

Toll-like receptors (TLR) play a central role in recognition and host frontline defence against a wide range of pathogens. A number of recent studies have shown that TLR genes (Tlrs) often exhibit large polymorphism in natural populations. Yet, there is little knowledge on how this polymorphism is maintained and how it influences disease susceptibility in the wild. In previous work, we showed that some Tlrs exhibit similarly high levels of genetic diversity as genes of the Major Histocompatibility Complex (MHC), and signatures of contemporary balancing selection in roe deer (Capreolus capreolus), the most abundant cervid species in Europe. Here, we investigated the evolutionary mechanisms by which pathogen-mediated selection could shape this innate immunity genetic diversity by examining the relationships between Tlr (Tlr2, Tlr4 and Tlr5) genotypes (heterozygosity status and presence of specific alleles) and infections with Toxoplasma and Chlamydia, two widespread intracellular pathogens known to cause reproductive failure in ungulates. We showed that Toxoplasma and Chlamydia exposures vary significantly across years and landscape features with few co-infection events detected and that the two pathogens exert antagonistic selection on Tlr2 polymorphism. By contrast, we found limited support for Tlr heterozygote advantage. Our study confirmed the importance of looking beyond Mhc genes in wildlife immunogenetic studies. It also emphasized the necessity to consider multiple pathogen challenges and their spatiotemporal variation to improve our understanding of vertebrate defence evolution against pathogens.


Asunto(s)
Ciervos , Selección Genética , Animales , Ciervos/genética , Inmunidad Innata/genética , Polimorfismo Genético , Receptores Toll-Like/genética
4.
Mol Ecol ; 24(15): 3873-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26120040

RESUMEN

Understanding how immune genetic variation is shaped by selective and neutral processes in wild populations is of prime importance in both evolutionary biology and epidemiology. The European roe deer (Capreolus capreolus) has considerably expanded its distribution range these last decades, notably by colonizing agricultural landscapes. This range shift is likely to have led to bottlenecks and increased roe deer exposure to a new range of pathogens that until recently predominantly infected humans and domestic fauna. We therefore investigated the historical and contemporary forces that have shaped variability in a panel of genes involved in innate and acquired immunity in roe deer, including Mhc-Drb and genes encoding cytokines or toll-like receptors (TLRs). Together, our results suggest that genetic drift is the main contemporary evolutionary force shaping immunogenetic variation within populations. However, in contrast to the classical view, we found that some innate immune genes involved in micropathogen recognition (e.g. Tlrs) continue to evolve dynamically in roe deer in response to pathogen-mediated positive selection. Most studied Tlrs (Tlr2, Tlr4 and Tlr5) had similarly high levels of amino acid diversity in the three studied populations including one recently established in southwestern France that showed a clear signature of genetic bottleneck. Tlr2 implicated in the recognition of Gram-positive bacteria in domestic ungulates, showed strong evidence of balancing selection. The high immunogenetic variation revealed here implies that roe deer are able to cope with a wide spectrum of pathogens and to respond rapidly to emerging infectious diseases.


Asunto(s)
Ciervos/genética , Flujo Genético , Variación Genética , Animales , Citocinas/inmunología , Ciervos/inmunología , Francia , Genética de Población , Haplotipos , Inmunidad Innata/genética , Complejo Mayor de Histocompatibilidad/genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Selección Genética , Análisis de Secuencia de ADN , Receptores Toll-Like/genética
5.
Parasitology ; 141(2): 259-68, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24135380

RESUMEN

Toxoplasmosis is largely present in rural areas but its spatial distribution in this environment remains poorly known. In particular, it is unclear if areas of high density of cats, the only hosts excreting Toxoplasma gondii, constitute foci of high prevalence. To improve our understanding of the spatial distribution of T. gondii in rural areas, we performed a serological survey in rodents from two villages in France. We trapped 710 rodents including commensal rats and meadow or forest voles and mice. The presence of T. gondii was examined using PCR, mice inoculation and modified agglutination test for antibodies (MAT). We conducted multivariate and discriminant analyses to identify biological, ecological or spatial variables that could explain T. gondii serology in rodents. We then used a logistic regression to assess the relative influence of each explanatory variable. Overall seroprevalence was 4.1%. Commensal-rats were more infected (12.5%) than non-commensal species (3.7%). However, the major determinant of the risk of infection was the distance to the nearest farm (OR = 0.75 for 100 m), which explained the risk in all species or non-commensal species only. We contrast the role of species characteristics and that of the local environment, and discuss the risk of environmental contamination for humans.


Asunto(s)
Enfermedades de los Roedores/epidemiología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/epidemiología , Animales , Anticuerpos Antiprotozoarios/sangre , Demografía , Ecología , Femenino , Francia/epidemiología , Humanos , Masculino , Modelos Estadísticos , Análisis Multivariante , Ratas , Riesgo , Enfermedades de los Roedores/parasitología , Roedores , Población Rural , Estudios Seroepidemiológicos , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasmosis Animal/parasitología , Zoonosis
6.
Anim Microbiome ; 6(1): 16, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528597

RESUMEN

Urbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness. The links between the impact of urbanization on host communities and their gut microbiota (GM) have only been scarcely explored. In this study, we tested the hypothesis that the bacterial composition of the GM could play a role in host adaptation to urban environments. We described the GM of several species of small terrestrial mammals sampled in forested areas along a gradient of urbanization, using a 16S metabarcoding approach. We tested whether urbanization led to changes in small mammal communities and in their GM, considering the presence and abundance of bacterial taxa and their putative functions. This enabled to decipher the processes underlying these changes. We found potential impacts of urbanization on small mammal communities and their GM. The urban dweller species had a lower bacterial taxonomic diversity but a higher functional diversity and a different composition compared to urban adapter species. Their GM assembly was mostly governed by stochastic effects, potentially indicating dysbiosis. Selection processes and an overabundance of functions were detected that could be associated with adaptation to urban environments despite dysbiosis. In urban adapter species, the GM functional diversity and composition remained relatively stable along the urbanization gradient. This observation can be explained by functional redundancy, where certain taxa express the same function. This could favor the adaptation of urban adapter species in various environments, including urban settings. We can therefore assume that there are feedbacks between the gut microbiota and host species within communities, enabling rapid adaptation.

7.
PLoS One ; 19(4): e0300523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598501

RESUMEN

Rodents are recognized as the main reservoirs of Leptospira spp. Rats, in particular, serve as hosts for the widely predominant Leptospira interrogans serovar Icterohaemorrhagiae, found worldwide. Several studies have shown the importance of other reservoirs, such as mice or hedgehogs, which harbor other leptospires' serovars. Nevertheless, our knowledge of circulating Leptospira spp. in reservoirs other than rats remains limited. In this context, we proposed an eco-health approach to assess the health hazard associated with leptospires in urban green spaces, where contacts between human/small mammals and domestic animals are likely. We studied the prevalence, the diversity of circulating strains, and epidemiology of pathogenic Leptospira species in small terrestrial mammal communities (rodents and shrews), between 2020-2022, in two parks in Lyon metropolis, France. Our study showed a significant carriage of Leptospira spp. in small terrestrial mammals in these parks and unveiled a global prevalence rate of 11.4%. Significant variations of prevalence were observed among the small mammal species (from 0 to 26.1%), with Rattus norvegicus exhibiting the highest infection levels (26.1%). We also observed strong spatio-temporal variations in Leptospira spp. circulation in its reservoirs. Prevalence seems to be higher in the peri-urban park and in autumn in 2021 and 2022. This is potentially due to differences in landscape, abiotic conditions and small mammal communities' composition. Our study suggests an important public health relevance of rats and in a lesser extent of other rodents (Apodemus spp., Clethrionomys glareolus and Mus musculus) as reservoirs of L. interrogans, with rodent species carrying specific serogroups/serovars. We also emphasize the potential hazard associated between the shrew Crocidura russula and L. kirschneri. Altogether, these results improve our knowledge about the prevalence of leptospirosis in an urban environment, which is an essential prerequisite for the implementation of prevention of associated risks.


Asunto(s)
Leptospira , Leptospirosis , Humanos , Ratas , Ratones , Animales , Leptospira/genética , Parques Recreativos , Prevalencia , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Roedores , Musarañas , Francia , Variación Genética
8.
PLoS Negl Trop Dis ; 18(5): e0012142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739651

RESUMEN

BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Parques Recreativos , Filogenia , Virus Seoul , Animales , Virus Seoul/genética , Virus Seoul/aislamiento & purificación , Virus Seoul/clasificación , Ratas/virología , Francia/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Fiebre Hemorrágica con Síndrome Renal/transmisión , Animales Salvajes/virología , Humanos , Ciudades/epidemiología , Enfermedades de los Roedores/virología , Enfermedades de los Roedores/epidemiología
9.
Ecol Evol ; 14(3): e10886, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455148

RESUMEN

Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.

10.
BMC Evol Biol ; 13: 194, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24028551

RESUMEN

BACKGROUND: In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). RESULTS: We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. CONCLUSIONS: In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands.


Asunto(s)
Evolución Molecular , Murinae/clasificación , Murinae/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 7/genética , Animales , Inmunidad Innata , Murinae/inmunología , Filogenia , Estructura Terciaria de Proteína , Especificidad de la Especie , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 7/química , Receptor Toll-Like 7/inmunología
11.
Infect Dis Now ; 53(8): 104767, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562571

RESUMEN

OBJECTIVE: A large and unprecedented outbreak of an attenuated form of hemorrhagic fever with renal syndrome called nephropathia epidemica (NE) and caused by Puumala virus (PUUV) occurred in 2021 in the southern Jura Mountains (France) leading to numerous hospitalizations. The aim of this study was to investigate the circulation of PUUV in its animal reservoir at the time of this outbreak. METHODS: We conjointly surveyed bank vole relative abundance, small mammal community composition, and PUUV circulation in bank voles (seroprevalence and genetic diversity) in the Jura NE epidemic area, between 2020 and 2022. RESULTS: Trapping results showed a higher relative abundance of bank voles in 2021 compared to 2020 and 2022. Extremely high levels of PUUV seroprevalence in bank voles were found at the time of the human NE epidemic with seropositive animals trapped in almost all trap lines as of spring 2021. Genetic analyses of PUUV (S segment) gathered in 2021 at two sampling sites revealed a strong clustering of these strains within the "Jura" clade. No significant genetic variation was detected compared to what was already known to be circulating in the Jura region. CONCLUSION: These results underline a need for enhanced monitoring of PUUV circulation in host reservoir populations in NE endemic areas. This would enable the relevant actors to better inform and sensitize the public on this zoonotic risk, and to implement prevention strategies in collaboration with physicians.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Virus Puumala/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/genética , Estudios Seroepidemiológicos , Brotes de Enfermedades , Arvicolinae , Francia/epidemiología
12.
Emerg Infect Dis ; 18(12): 2063-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23171720

RESUMEN

To further assess the geographic occurrence, possible vectors, and prevalence of Candidatus Neoehrlichia mikurensis, we analyzed spleen tissues from 276 voles trapped close to human settlements in France; 5 were infected with the organism. Sequencing showed the isolates carried the same genotype as the bacteria that caused disease in humans and animals elsewhere in Europe.


Asunto(s)
Infecciones por Anaplasmataceae/veterinaria , Anaplasmataceae/aislamiento & purificación , Arvicolinae/microbiología , Anaplasmataceae/clasificación , Anaplasmataceae/genética , Infecciones por Anaplasmataceae/virología , Animales , ADN Bacteriano , Francia/epidemiología , Genes Bacterianos , Filogenia
13.
Immunol Rev ; 225: 163-89, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18837782

RESUMEN

SUMMARY: Hantaviruses are predominantly rodent-borne pathogens, although recently novel shrew-associated hantaviruses were found. Within natural reservoir hosts, hantairuses do not cause obvious pathogenetic effects; transmission to humans, however, can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome, depending on the virus species involved. This review is focussed on the recent knowledge on hantavirus-induced immune responses in rodent reservoirs and humans and their impact on susceptibility, transmission, and outcome of hantavirus infections. In addition, this review incorporates a discussion on the potential role of direct cell-virus interactions in the pathogenesis of hantavirus infections in humans. Finally, questions for further research efforts on the immune responses in potential hantavirus reservoir hosts and humans are summarized.


Asunto(s)
Células Dendríticas/inmunología , Reservorios de Enfermedades/virología , Infecciones por Hantavirus/inmunología , Orthohantavirus/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Apoptosis/inmunología , Células Dendríticas/metabolismo , Orthohantavirus/genética , Orthohantavirus/inmunología , Infecciones por Hantavirus/patología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Humanos , Inmunidad Activa , Inmunidad Innata , Integrinas/inmunología , Integrinas/metabolismo , Roedores/inmunología , Roedores/virología , Subgrupos de Linfocitos T/metabolismo , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Biodivers Data J ; 10: e95214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761546

RESUMEN

Background: Understanding the relationships between wildlife biodiversity and zoonotic infectious diseases in a changing climate is a challenging issue that scientists must address to support further policy actions. We aim at tackling this challenge by focusing on small mammal-borne diseases in temperate forests and large urban green spaces. Small mammals are important reservoirs of zoonotic agents, with a high transmission potential for humans and domestic animals. Forests and large urban green spaces are ecosystems where efforts are undertaken to preserve biodiversity. They are put forward for their contribution to human well-being in addition to other ecosystem services (e.g. provisioning and regulating services). Moreover, forests and large urban green spaces are environments where small mammals are abundant and human/domestic-wildlife interactions are plausible to occur. These environments are, therefore, focal points for conservation management and public health issues. New information: The European Biodiversa BioRodDis project (https://www6.inrae.fr/biodiversa-bioroddis) aims at better understanding the relationships between small terrestrial mammal biodiversity and health in the context of global change and, in particular, of forest anthropisation and urbanisation. Here, we present the data gathered in France. The dataset will enable us to describe the diversity of small terrestrial mammal communities in forested areas corresponding to different levels of anthropisation and to evaluate the variability of this diversity over time, between seasons and years.The dataset contains occurrences of small terrestrial mammals (Rodentia and Soricomorpha) trapped in forested areas in eastern France (administrative Departments: Rhône, Ain, Jura). The sampling sites correspond to different degrees of anthropisation. Forests included in biological reserves are the least anthropised sites. Then, public forests and urban parks experience increasing levels of anthropisation. Data were collected during spring and autumn 2020 (three to four sampling sites), 2021 (six sampling sites) and 2022 (four sampling sites). These variations in the number of sites between years were due to lockdown restrictions in 2020 or to the legal authorisation to trap around biological reserves granted in 2021 only. The capture of animals was carried out in various types of forests (pine, deciduous, mixed) and in different habitats within urban parks (wooded areas, buildings, hay storage yards, riverside vegetation, restaurants, playground for kids, botanical garden, landfills). Animals were captured using live traps that were set on the ground for one to 11 nights. During this study period, 1593 small mammals were trapped and identified. They belong to 15 species, amongst which were nine species of rodents (Muridae, Cricetidae, Gliridae) and six species of shrews (Soricidae). They were weighted (gram) and measured (cm): head-body length, tail length and hind-foot length. Sexual characteristics were also recorded.

15.
BMC Microbiol ; 11(1): 30, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21303497

RESUMEN

BACKGROUND: Puumala virus, the agent of nephropathia epidemica (NE), is the most prevalent hantavirus in Europe. The risk for human infection seems to be strongly correlated with the prevalence of Puumala virus (PUUV) in populations of its reservoir host species, the bank vole Myodes glareolus. In humans, the infection risks of major viral diseases are affected by the presence of helminth infections. We therefore proposed to analyse the influence of both helminth community and landscape on the prevalence of PUUV among bank vole populations in the Ardennes, a PUUV endemic area in France. RESULTS: Among the 313 voles analysed, 37 had anti-PUUV antibodies. Twelve gastro-intestinal helminth species were recorded among all voles sampled. We showed that PUUV seroprevalence strongly increased with age or sexual maturity, especially in the northern forests (massif des Ardennes). The helminth community structure significantly differed between this part and the woods or hedgerows of the southern cretes pre-ardennaises. Using PUUV RNA quantification, we identified significant coinfections between PUUV and gastro-intestinal helminths in the northern forests only. More specifically, PUUV infection was positively associated with the presence of Heligmosomum mixtum, and in a lesser extent, Aonchotheca muris-sylvatici. The viral load of PUUV infected individuals tended to be higher in voles coinfected with H. mixtum. It was significantly lower in voles coinfected with A. muris-sylvatici, reflecting the influence of age on these latter infections. CONCLUSIONS: This is the first study to emphasize hantavirus--helminth coinfections in natural populations. It also highlights the importance to consider landscape when searching for such associations. We have shown that landscape characteristics strongly influence helminth community structure as well as PUUV distribution. False associations might therefore be evidenced if geographic patterns of helminths or PUUV repartition are not previously identified. Moreover, our work revealed that interactions between helminths and landscape enhance/deplete the occurrence of coinfections between PUUV and H. mixtum or A. muris-sylvatici. Further experimental analyses and long-term individual surveys are now required to confirm these correlative results, and to ascertain the causal links between helminth and PUUV infection risks.


Asunto(s)
Arvicolinae/parasitología , Arvicolinae/virología , Virus Puumala/patogenicidad , Animales , Helmintiasis/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Humanos , Virus Puumala/crecimiento & desarrollo
16.
Pathogens ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809526

RESUMEN

Puumala orthohantavirus (PUUV) causes a mild form of haemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE), regularly diagnosed in Europe. France represents the western frontier of the expansion of NE in Europe with two distinct areas: an endemic area (north-eastern France) where PUUV circulates in rodent populations, with the detection of many human NE cases, and a non-endemic area (south-western France) where the virus is not detected, with only a few human cases being reported. In this study, we describe the different stages of the isolation of two PUUV strains from two distinct French geographical areas: Ardennes (endemic area) and Loiret (non-endemic area). To isolate PUUV efficiently, we selected wild bank voles (Myodes glareolus, the specific reservoir of PUUV) captured in these areas and that were seronegative for anti-PUUV IgG (ELISA) but showed a non-negligible viral RNA load in their lung tissue (qRT-PCR). With this study design, we were able to cultivate and maintain these two strains in Vero E6 cells and also propagate both strains in immunologically neutral bank voles efficiently and rapidly. High-throughput and Sanger sequencing results provided a better assessment of the impact of isolation methods on viral diversity.

17.
BMC Genomics ; 11: 296, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20459828

RESUMEN

BACKGROUND: High-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method. RESULTS: DNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%. CONCLUSIONS: This new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.


Asunto(s)
Roedores/genética , Análisis de Secuencia de ADN/métodos , Animales , Genotipo , Pulmón/química , Reproducibilidad de los Resultados , Roedores/clasificación , Análisis de Secuencia de ADN/economía , Dedos del Pie
18.
J Gen Virol ; 91(Pt 10): 2507-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20573856

RESUMEN

We analysed the influence of MHC class II Dqa and Drb genes on Puumala virus (PUUV) infection in bank voles (Myodes glareolus). We considered voles sampled in five European localities or derived from a previous experiment that showed variable infection success of PUUV. The genetic variation observed in the Dqa and Drb genes was assessed by using single-strand conformation polymorphism and pyrosequencing methods, respectively. Patterns were compared with those obtained from 13 microsatellites. We revealed significant genetic differentiation between PUUV-seronegative and -seropositive bank voles sampled in wild populations, at the Drb gene only. The absence of genetic differentiation observed at neutral microsatellites confirmed the important role of selective pressures in shaping these Drb patterns. Also, we found no significant associations between infection success and MHC alleles among laboratory-colonized bank voles, which is explained by a loss of genetic variability that occurred during the captivity of these voles.


Asunto(s)
Arvicolinae/virología , Fiebre Hemorrágica con Síndrome Renal/genética , Antígenos de Histocompatibilidad Clase II/genética , Polimorfismo Conformacional Retorcido-Simple , Virus Puumala/patogenicidad , Enfermedades de los Roedores/genética , Animales , Fiebre Hemorrágica con Síndrome Renal/inmunología , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Virus Puumala/inmunología , Enfermedades de los Roedores/inmunología , Análisis de Secuencia de ADN
19.
Ecol Evol ; 10(13): 6310-6332, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724515

RESUMEN

During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo-mock community (33 arthropod taxa from 16 orders), and guano-based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano-based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one-third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.

20.
Sci Rep ; 10(1): 18257, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106535

RESUMEN

Biological invasions are major anthropogenic changes associated with threats to biodiversity and health. However, what determines the successful establishment and spread of introduced populations remains unclear. Here, we explore several hypotheses linking invasion success and immune phenotype traits, including those based on the evolution of increased competitive ability concept. We compared gene expression profiles between anciently and recently established populations of two major invading species, the house mouse Mus musculus domesticus and the black rat Rattus rattus, in Senegal (West Africa). Transcriptome analyses identified differential expression between anciently and recently established populations for 364 mouse genes and 83 rat genes. All immune-related genes displaying differential expression along the mouse invasion route were overexpressed at three of the four recently invaded sites studied. Complement activation pathway genes were overrepresented among these genes. By contrast, no particular immunological process was found to be overrepresented among the differentially expressed genes of black rat. Changes in transcriptome profiles were thus observed along invasion routes, but with different specific patterns between the two invasive species. These changes may be driven by increases in infection risks at sites recently invaded by the house mouse, and by stochastic events associated with colonization history for the black rat. These results constitute a first step toward the identification of immune eco-evolutionary processes potentially involved in the invasion success of these two rodent species.


Asunto(s)
Biodiversidad , Evolución Molecular , Perfilación de la Expresión Génica , Especies Introducidas/estadística & datos numéricos , Roedores/genética , Roedores/inmunología , Análisis de Secuencia de ARN/métodos , África Occidental , Animales , Genética de Población , Ratones , Ratas , Roedores/metabolismo , Senegal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda