Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microb Pathog ; 149: 104515, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32976968

RESUMEN

Bovine viral diarrhea virus (BVDV) infection is a major problem that results in economically important diseases of the cattle industry worldwide. The two major consequences of this disease are persistent infection and immune dysfunction. A number of studies have been done to determine the underline mechanisms of BVDV-induced immune dysfunction, in particular targeting antigen-presenting cells, T- and B- cells and cytokine gene expression. However, little research has focused Eon the effect of BVDV on neutrophils. Neutrophils are one of the predominant leukocytes circulating in blood and are considered the first line of defense in the innate immune system along with macrophages. Neutrophils not only eliminate the invading bacteria but also activate innate as well as adaptive immune responses. Therefore, compromised neutrophil function would affect both arms of immune system and caused immune suppression. In the current study, we used virus strains from both BVDV-1 and BVDV-2 species. Including a highly virulent non-cytopathic type 2a BVDV (ncp BVDV2a-1373), moderately virulent non-cytopathic type 2a (ncp BVDV2a 28508-5), and a pair of non-cytopathic type 1b BVDV (ncp BVDV1b TGAN) and cytopathic type 1b BVDV (cp BVDV1b TGAC) strain isolated from a case of mucosal disease. The highly virulent ncp BVDV2a-1373 significantly increased neutrophil apoptosis. However, none of the other BVDV strains affected neutrophil viability. All BVDV strains used significantly reduced CD18 and L-selectin expression on neutrophils as well as their oxidative burst and neutrophil extracellular traps (NET) activity. Cp BVDV significantly reduced neutrophil's phagocytic activity but ncp BVDV did not have any effect on it. On the other hand, ncp BVDV significantly increased neutrophil's CD14 expression and chemotactic activity while cp BVDV did not show any effect either on neutrophil's CD14 expression or on chemotactic activity. In conclusion, BVDV affected neutrophils variability and functional activity in strain dependent manner. Results of the current study will further help in understanding the pathophysiology of different BVDV strains.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Animales , Apoptosis , Bovinos , Diarrea , Humanos , Neutrófilos
2.
J Gen Virol ; 100(4): 556-567, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30869580

RESUMEN

Following a summer of severe drought and abnormally high temperatures, a major outbreak of EHDV occurred during 2012 in the USA. Although EHDV-1, -2 and -6 were isolated, EHDV-2 was the predominant virus serotype detected during the outbreak. In addition to large losses of white-tailed deer, the Midwest and northern Plains saw a significant amount of clinical disease in cattle. Phylogenetic analyses and sequence comparisons of newly sequenced whole genomes of 2012 EHDV-2 cattle isolates demonstrated that eight of ten EHDV-2 genomic segments show no genetic changes that separate the cattle outbreak sequences from other EHDV-2 isolates. Two segments, VP2 and VP6, did show several unique genetic changes specific to the 2012 cattle outbreak isolates, although the impact of the genetic changes on viral fitness is unknown. The placement of isolates from 2007 and 2011 as sister group to the outbreak isolates, and the similarity between cattle and deer isolates, point to environmental variables as having a greater influence on the severity of the 2012 EHDV outbreak than viral genetic changes.


Asunto(s)
Enfermedades de los Bovinos/virología , Virus de la Enfermedad Hemorrágica Epizoótica/genética , Virus de la Enfermedad Hemorrágica Epizoótica/aislamiento & purificación , Infecciones por Reoviridae/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Ciervos/virología , Brotes de Enfermedades , Variación Genética , Genoma Viral , Virus de la Enfermedad Hemorrágica Epizoótica/clasificación , Filogenia , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/virología , Estados Unidos/epidemiología , Proteínas Virales/genética
3.
Arch Virol ; 164(11): 2843-2848, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31494777

RESUMEN

The Cooper and Los Angeles (LA) strains were the two original respiratory strains of bovine herpesvirus type 1.1 (BoHV-1.1) isolated in the 1950s from cattle with infectious bovine rhinotracheitis. We report the complete genome sequence for the BoHV-1.1 LA strain and compare it to the prototype Cooper strain and six wild-type BoHV-1.1 isolates. A nucleotide sequence divergence of 0.74% was noted across the two complete genomes, caused by 19 single-nucleotide polymorphisms (SNPs) involving 12 genes and insertions/deletions that primarily affected the number of repeats within reiterated repeat regions of the genome. Phylogenetic analysis revealed that Cooper and LA strains are genetically the most ancient strains from which all of the more-recently isolated field strains of BoHV-1.1 evolved.


Asunto(s)
Genoma Viral/genética , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/genética , Rinotraqueítis Infecciosa Bovina/virología , Animales , Secuencia de Bases , Bovinos , Enfermedades de los Bovinos/virología , Genotipo , Herpesvirus Bovino 1/clasificación , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
4.
Microb Pathog ; 121: 341-349, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29859294

RESUMEN

The innate immune response is a vital part of the body's antiviral defense system. The innate immune response is initiated by various receptor interactions, including danger associated molecular patterns (DAMPs). The S100A9 is a member of the DAMPs protein family and, is released by activated phagocytic cells such as neutrophils, monocytes, macrophages or endothelial cells, and S100A9 induces its effect through TLR4/MyD88 pathway. Bovine viral diarrhea virus (BVDV) is one of the major devastating disease in the cattle industry worldwide. It shows its effect through immunosuppression and develops persistent infection in calves born from infected cows. The current study revealed that BVDV potentially induced immunosuppression by the interaction of BVDV Npro protein with cellular S100A9 protein. The Inhibition of S100A9 protein expression by small interfering RNA (siRNA) enhanced the virus replication in infected cells. Overexpression of bovine S100A9 enhanced the ncpBVDV2a 1373 mediated Type-I interferon production. A co-immunoprecipitation experiment demonstrated a strong interaction between ncp BVDV2a 1373 Npro protein and cellular S100A9 protein. This suggested that BVDV Npro reduced the S100A9 protein availability/activity in infected cells, resulting in reduced Type-I interferon production. A further study of S100A9-BVDV interaction will be need for better understanding of BVDV pathophysiology.


Asunto(s)
Diarrea Mucosa Bovina Viral/inmunología , Calgranulina B/metabolismo , Virus de la Diarrea Viral Bovina/genética , Terapia de Inmunosupresión , Proteínas Virales/genética , Animales , Calgranulina B/genética , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Línea Celular , Virus de la Diarrea Viral Bovina/fisiología , Inmunidad Innata , Interferón Tipo I/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/aislamiento & purificación , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
5.
Virol J ; 11: 44, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24607146

RESUMEN

BACKGROUND: Dendritic cells (DC) are important antigen presentation cells that monitor, process, and present antigen to T cells. Viruses that infect DC can have a devastating impact on the immune system. In this study, the ability of bovine viral diarrhea virus (BVDV) to replicate and produce infectious virus in monocyte-derived dendritic cells (Mo-DC) and monocytes was studied. The study also examined the effect of BVDV infection on Mo-DC expression of cell surface markers, including MHCI, MHCII, and CD86, which are critical for DC function in immune response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from bovine blood through gradient centrifugation. The adherent monocytes were isolated from PBMCs and differentiated into Mo-DC using bovine recombinant interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GMCSF). To determine the effect of BVDV on Mo-DC, four strains of BVDV were used including the severe acute non-cytopathic (ncp) BVDV2a-1373; moderate acute ncp BVDV2a 28508-5; and a homologous virus pair [i.e., cytopathic (cp) BVDV1b TGAC and ncp BVDV1b TGAN]. The Cooper strain of bovine herpesvirus 1 (BHV1) was used as the control virus. Mo-DC were infected with one of the BVDV strains or BHV-1 and were subsequently examined for virus replication, virus production, and the effect on MHCI, MHCII, and CD86 expression. RESULTS: The ability of monocytes to produce infectious virus reduced as monocytes differentiated to Mo-DC, and was completely lost at 120 hours of maturation. Interestingly, viral RNA increased throughout the course of infection in Mo-DC, and the viral non-structural (NS5A) and envelope (E2) proteins were expressed. The ncp strains of BVDV down-regulated while cp strain up-regulated the expression of the MHCI, MHCII, and CD86 on Mo-DC. CONCLUSIONS: The study revealed that the ability of Mo-DC to produce infectious virus was reduced with its differentiation from monocytes to Mo-DC. The inability to produce infectious virus may be due to a hindrance of virus packaging or release mechanisms. Additionally, the study demonstrated that ncp BVDV down-regulated and cp BVDV up-regulated the expression of Mo-DC cell surface markers MHCI, MHCII, and CD86, which are important in the mounting of immune responses.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Virus de la Diarrea Viral Bovina Tipo 1/inmunología , Virus de la Diarrea Viral Bovina Tipo 1/fisiología , Monocitos/inmunología , Monocitos/virología , Replicación Viral , Animales , Antígeno B7-2/análisis , Bovinos , Células Cultivadas , Células Dendríticas/química , Antígenos de Histocompatibilidad Clase I/análisis , Antígenos de Histocompatibilidad Clase II/análisis , Monocitos/química , Fenotipo
6.
Pathogens ; 13(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38921814

RESUMEN

The efficacy of an intranasal (IN) bovine respiratory syncytial virus (BRSV) vaccine administered in the presence of passive immunity was assessed. Pooled colostrum was administered by intubation to 50 beef-dairy crossbred calves the day they were born. The calves were transported to a research facility and were blocked by age and sex, and randomly assigned into two groups: sham-vaccinated intranasally with a placebo (sterile water) or vaccinated with a trivalent (BRSV, bovine herpesvirus 1 and bovine parainfluenza 3) modified live viral (MLV) vaccine. The calves were 9 ± 2 days old when vaccinated (day 0). The calves were challenged by aerosolized BRSV on days 80 and 81 as a respiratory challenge. The study was terminated on day 88. Lung lesion scores (LLS) were significantly lower for calves vaccinated with trivalent MLV vaccine than those for calves that were sham-vaccinated. Serum neutralization (SN) antibody against BRSV in calves vaccinated with the trivalent MLV vaccine demonstrated an anamnestic response on day 88. After challenge, the calves sham-vaccinated with the placebo lost weight, while those vaccinated with the trivalent MLV vaccine gained weight. In this study, colostrum-derived antibodies did not interfere with the immune response or protection provided by one dose of the trivalent MLV vaccine.

7.
Biologicals ; 41(1): 52-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23137817

RESUMEN

Bovine viral diarrhea virus (BVDV) causes immunosuppression of the adaptive immune response. The level of suppression of the adaptive immune response is strain dependent. The early events of antigen presentation require activation of toll-like receptors that results in the release of pro-inflammatory cytokines. Non-cytopathic (ncp) BVDV infection stimulates cytokines from macrophages in vitro but the effect of BVDV infection in vivo on macrophages or in vitro with monocytes is not clear. Antigen presentation is decreased and co-stimulatory molecules are down regulated. T-lymphocytes numbers are reduced following BVDV infection in a strain dependent manner. There is recruitment of lymphocytes to the bronchial alveolar space following cytopathic (cp) BVDV infection. Depletion of T-lymphocytes occurs in the lymphoid tissue and is strain dependent. BVDV cp T-lymphocyte responses appear to be primarily a T helper 1 response while the response following ncp BVDV induces a T helper 2 response. Cytotoxic T-lymphocytes (CTL), an important BVDV defense mechanism are compromised. The major neutralizing antigens are well characterized but cross-protection between strains is variable. PI animals have normal adaptive immune responses with the exception of the PI strain immunotolerance and mucosal disease may be a function of the level of gamma delta T cells.


Asunto(s)
Inmunidad Adaptativa/inmunología , Diarrea Mucosa Bovina Viral/inmunología , Efecto Citopatogénico Viral/inmunología , Virus de la Diarrea Viral Bovina/inmunología , Animales , Presentación de Antígeno/inmunología , Diarrea Mucosa Bovina Viral/metabolismo , Diarrea Mucosa Bovina Viral/virología , Bovinos , Citocinas/inmunología , Citocinas/metabolismo , Virus de la Diarrea Viral Bovina/fisiología , Interacciones Huésped-Patógeno/inmunología , Modelos Inmunológicos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
8.
Vaccine ; 41(19): 3080-3091, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37045678

RESUMEN

Bovine respiratory disease is the greatest threat to calf health. In this study, colostrum-fed dairy X beef calves were vaccinated at ∼30 days of age with an adjuvanted parenteral vaccine containing modified live bovine viral diarrhea virus (BVDV) type 1 and type 2, bovine herpesvirus 1 (BHV-1), bovine parainfluenza type 3 virus (PI3V) and bovine respiratory syncytial virus (BRSV) andM. haemolyticatoxoid (Group 1), or intranasal temperature-sensitive BHV-1, BRSV and PI3V concurrently witha parenteral vaccine containing modified live BVDV type 1 and type 2 andM. haemolyticatoxoid (Group 2) or a placebo (Group 3). The calves were challenged ∼150 days post vaccination intranasally with BVDV 1b and then 7 days later intratracheally withM. haemolytica. The calves wereeuthanized 6 days after theM. haemolyticachallenge. Clinical signs following BVDV infection were similar in all groups. There was increased rectal temperatures in the Groups 2 and 3 on day 3 and in Group 3 on days 8-13. Group 1 animals had a slight leukopenia following BVDV infection while Groups 2 and 3 had greater leukopenia. BVDV type 1 and 2 serum titers increased in Group 1 following vaccination while these titers waned in Groups 2 and 3. There were higher levels of BVDV in the buffy coats and nasal samples in Group 2 and Group 3 versus Group 1 (p < 0.01). Interferon-gamma response was higher (p < 0.01) in Group 1 animals than Groups 2 and 3. Group 1 had the lowest percent pneumonic tissue (1.6%) while Group 2 vaccinates had 3.7% and the control Group 3 was 5.3%. Vaccination in the face of maternal antibody with a parenteral adjuvanted vaccine resulted in better protection than the regimen of an intranasal vaccine anda parenteral adjuvanted BVDV andM haemolyticacombination vaccine in a BVDV-M. haemolyticadual challenge.


Asunto(s)
Diarrea Mucosa Bovina Viral , Enfermedades de los Bovinos , Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Herpesvirus Bovino 1 , Leucopenia , Mannheimia , Enfermedades Respiratorias , Vacunas Virales , Animales , Bovinos , Diarrea Mucosa Bovina Viral/prevención & control , Anticuerpos Antivirales , Enfermedades de los Bovinos/prevención & control , Vacunación/veterinaria , Diarrea
9.
Front Vet Sci ; 10: 1161902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138923

RESUMEN

During preconditioning, modified-live vaccines are frequently administered to beef calves before weaning. In this study, we began to characterize the immune phenotype of calves that received a modified-live vaccination at 3-4 months of age and then either received the same modified-live or an inactivated vaccine upon arrival at the feedlot (weaning) and 28 days post-arrival (booster). Innate and adaptive immune measures were assessed before revaccination and 14 and 28 days post. Heifers that received three doses of the modified-live vaccine exhibited a relatively balanced immune response based on increases in mean cytokine concentrations (IL-17, IL-21) and total immunoglobulin-G (IgG) and subsets IgG1 and IgG2, which are related to both arms of the adaptive immune system. Conversely, heifers that received one dose of modified live and two doses of the inactivated vaccine had a more robust neutrophil chemotactic response and greater serum-neutralizing antibody titers, resulting in an enhanced innate immune and a skewed proinflammatory response. These results indicate that the revaccination protocol used after initial vaccination with a modified-live vaccine differentially influences the immune phenotype of beef calves, with three doses of modified live inducing potentially immune homeostasis and a combination of modified live and inactivated vaccines inducing a skewed immune phenotype. However, more research is needed to determine the protective efficacy of these vaccination protocols against disease.

10.
Vet Clin North Am Food Anim Pract ; 38(1): 17-37, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35219483

RESUMEN

Vaccination is an important component for the prevention and control of disease in calves. Too often vaccines are viewed as a catch-all solution for management and nutrition errors; the "best" vaccine can never overcome these deficiencies. Proper vaccination in the young calf and developing heifer is the key to long-term development of a productive dairy cow. To actually immunize animals, animals must be able to respond to vaccines, which is dependent on the level of animal husbandry. Each vaccine program needs to be designed based on animal flow, actual "disease" threats, and labor on the farm.


Asunto(s)
Crianza de Animales Domésticos , Vacunación , Animales , Bovinos , Femenino , Vacunación/veterinaria
11.
Antivir Chem Chemother ; 30: 20402066221103960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611441

RESUMEN

BACKGROUND: Bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV). and bovine coronavirus (BCV) threaten the productivity of cattle worldwide. Development of therapeutics that can control the spread of these viruses is an unmet need. The present research was designed to explore the in vitro antiviral activity of the Nerium oleander derived cardiac glycoside oleandrin and a defined N. oleander plant extract (PBI-05204) containing oleandrin. METHODS: Madin Darby Bovine Kidney (MDBK) cells, Bovine Turbinate (BT) cells, and Human Rectal Tumor-18 (HRT-18) cells were used as in vitro culture systems for BVDV, BRSV and BCV, respectively. Cytotoxicity was established using serial dilutions of oleandrin or PBI-05204. Noncytotoxic concentrations of each drug were used either prior to or at 12 h and 24 h following virus exposure to corresponding viruses. Infectious virus titers were determined following each treatment. RESULTS: Both oleandrin as well as PBI-05204 demonstrated strong antiviral activity against BVDV, BRSV, and BCV, in a dose-dependent manner, when added prior to or following infection of host cells. Determination of viral loads by PCR demonstrated a concentration dependent decline in virus replication. Importantly, the relative ability of virus produced from treated cultures to infect new host cells was reduced by as much as 10,000-fold at noncytotoxic concentrations of oleandrin or PBI-05204. CONCLUSIONS: The research demonstrates the potency of oleandrin and PBI-05204 to inhibit infectivity of three important enveloped bovine viruses in vitro. These data showing non-toxic concentrations of oleandrin inhibiting infectivity of three bovine viruses support further investigation of in vivo antiviral efficacy.


Asunto(s)
Virus de la Diarrea Viral Bovina , Nerium , Virus Sincitial Respiratorio Bovino , Animales , Antivirales/farmacología , Cardenólidos/farmacología , Cardenólidos/uso terapéutico , Bovinos , Compuestos Heterocíclicos de 4 o más Anillos , Rhinovirus
12.
Vet Microbiol ; 252: 108949, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33338948

RESUMEN

Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.


Asunto(s)
Anticuerpos Antivirales/sangre , Diarrea Mucosa Bovina Viral/virología , Virus de la Diarrea Viral Bovina/inmunología , Infecciones por Parvoviridae/veterinaria , Parvovirus/inmunología , Animales , Bison , Diarrea Mucosa Bovina Viral/epidemiología , Bovinos , Coinfección/veterinaria , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Infecciones por Parvoviridae/microbiología , Parvovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/veterinaria , Estados Unidos/epidemiología
13.
Viruses ; 12(7)2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610565

RESUMEN

Bovine viral diarrhea virus (BVDV) is an important viral disease of cattle that causes immune dysfunction. Macrophages are the key cells for the initiation of the innate immunity and play an important role in viral pathogenesis. In this in vitro study, we studied the effect of the supernatant of BVDV-infected macrophage on immune dysfunction. We infected bovine monocyte-derived macrophages (MDM) with high or low virulence strains of BVDV. The supernatant recovered from BVDV-infected MDM was used to examine the functional activity and surface marker expression of normal macrophages as well as lymphocyte apoptosis. Supernatants from the highly virulent 1373-infected MDM reduced phagocytosis, bactericidal activity and downregulated MHC II and CD14 expression of macrophages. Supernatants from 1373-infected MDM induced apoptosis in MDBK cells, lymphocytes or BL-3 cells. By protein electrophoresis, several protein bands were unique for high-virulence, 1373-infected MDM supernatant. There was no significant difference in the apoptosis-related cytokine mRNA (IL-1beta, IL-6 and TNF-a) of infected MDM. These data suggest that BVDV has an indirect negative effect on macrophage functions that is strain-specific. Further studies are required to determine the identity and mechanism of action of these virulence factors present in the supernatant of the infected macrophages.


Asunto(s)
Apoptosis/efectos de los fármacos , Medios de Cultivo/farmacología , Virus de la Diarrea Viral Bovina/inmunología , Inmunidad Innata , Inflamación , Linfocitos/patología , Macrófagos/inmunología , Macrófagos/virología , Animales , Bovinos , Línea Celular , Citocinas/inmunología , Efecto Citopatogénico Viral , Virus de la Diarrea Viral Bovina/patogenicidad , Linfocitos/virología , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos
14.
Res Vet Sci ; 129: 109-116, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31954315

RESUMEN

Bovine viral diarrhea virus (BVDV) infection causes immune dysfunction. The current study investigated the effect of cytopathic (cp) or noncytopathic (ncp) strains of BVDV on immunomodulation by the levels of total serum immunoglobulin G (IgG), the IgG1, IgG2, BVDV neutralizing antibodies and total white blood cell (WBC) count. Twenty (20) BVDV seronegative dairy calves (5-6 months old) were divided in two groups of ten. The animals were infected with either a cp or ncp virus isolated from the same animal (ncp BVDV1b-TGAN or cp BVDV1b-TGAC). One group of 10 was infected with ncp TGAN while the other group of 10 was infected with cp TGAC. Calves infected with cp BVDV had a significant decrease in total IgG as well as IgG1 concentration at 7 days post infection (DPI) that recovered by 21 DPI (total IgG) and 35 DPI (IgG1), respectively. There was no effect of ncp BVDV infection on total IgG concentration in the first 7 days of infection (DOI); however, IgG1 concentration was significantly reduced and IgG2 concentration was significantly increased at 7 DOI. At 35 DPI, ncp TGAN-infected calves had significantly higher total IgG, IgG1 as well as IgG2 compared to cp TGAC-infected calves. Ncp BVDV induced higher BVDV homologous and heterologous neutralizing antibodies compared to the cp BVDV strain. Calves infected with ncp BVDV had significantly reduced WBC counts at 7 DPI that recovered by 14 DPI. Overall, these findings indicate that humoral immunosuppression occurs early following BVDV infection with the largest effect on IgG1 levels.


Asunto(s)
Diarrea Mucosa Bovina Viral/inmunología , Diarrea Mucosa Bovina Viral/virología , Efecto Citopatogénico Viral , Virus de la Diarrea Viral Bovina Tipo 1/patogenicidad , Inmunidad Humoral , Animales , Diarrea Mucosa Bovina Viral/patología , Bovinos , Recuento de Leucocitos
15.
Vaccine ; 38(2): 298-308, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31668818

RESUMEN

Bovine respiratory syncytial virus (BRSV) is major viral contributor to bovine respiratory disease (BRD). BRD is a major cause of morbidity and mortality in all classes of cattle but particularly young beef and dairy calves. Passive antibodies not only help protect the calf against infection, but may interfere with the immune responses following vaccination. The purpose of this study was to evaluate the efficacy of an adjuvanted modified live virus (MLV) vaccine in the presence of well-defined maternal passive immunity. Calves were vaccinated at approximately 1 month of age and challenged ~90 days later when BRSV systemic antibodies were ≤1:4. Body temperature was lower at 6 and 7 days post challenge and other clinical signs were also lower in the vaccinates. Nasal viral shed was 3-4 times lower in the vaccinated animals as measured by virus isolation and polymerase chain reaction (PCR) and peaked 5 days post challenge compared to the controls (who peaked at days 6 and 7). On day 8 following challenge, animals were necropsied, and lung lobes were scored and tested for virus by PCR and indirect fluorescent assay (IFA). There was a 25-fold reduction in PCR virus detection in vaccinates and two of the vaccinated calves' lungs were PCR negative. Only 29.4% of vaccinated calves were BRSV positive on IFA testing at necropsy, while 87.5% of control calves were BRSV positive. Vaccinated calves developed a mucosal BRSV IgA response with over 50% of the vaccinated calves having IgA prior to challenge and all vaccinated calves were positive following challenge. Additionally, vaccination stimulated the production of Interferon gamma (IFN-γ) in mononuclear cells to prime the immune system. This study established that an adjuvanted MLV vaccine could provide protection against BRSV as measured by clinical, virological, and pathological parameters while also activating both mucosal and systemic immunity.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Bovino/inmunología , Animales , Anticuerpos Antivirales/inmunología , Temperatura Corporal , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Femenino , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Masculino , Reacción en Cadena de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/veterinaria , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunación , Esparcimiento de Virus
16.
Viruses ; 12(7)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679648

RESUMEN

The aim of this study was to evaluate secondary clinical disease, milk production efficiency and reproductive performance of heifers and cows persistently infected (PI) with bovine viral diarrhea virus type 2 (BVDV type 2). PI animals (n = 25) were identified using an antigen capture ELISA of ear notch samples. They were distributed into three age groups: ≤ 12 (n = 8), 13 to 24 (n = 6) and 25 to 34 (n = 11) months old. A control group of BVDV antigen ELISA negative female cattle that were age matched to the PI animals was utilized from the same herd. The PI group had a 1.29 higher odds ratio for diarrhea than controls (p = 0.001, IC95% = 1.032-1.623) and 1.615 greater chance of developing bovine respiratory disease (BRD) (p = 0.012, IC95% = 1.155-2.259). The age at first insemination (p = 0.012) and number of insemination attempts required to establish the first pregnancy (p = 0.016) were both higher for PI than controls. Milk production was higher for control cows than PI cows during most of the sampling periods. Somatic cell counts (SCC) were higher in PI cows than the controls at all sampling points across lactation (p ≤ 0.042). PI cattle had a higher incidence of disease, produced less milk, a higher SCC, and poorer reproductive performance than control cattle in this study.


Asunto(s)
Diarrea Mucosa Bovina Viral/fisiopatología , Virus de la Diarrea Viral Bovina Tipo 2/patogenicidad , Lactancia , Leche/química , Reproducción , Animales , Bovinos , Industria Lechera , Diarrea/veterinaria , Diarrea/virología , Virus de la Diarrea Viral Bovina Tipo 2/inmunología , Femenino , Embarazo , Vacunas Virales/administración & dosificación
17.
Front Immunol ; 11: 589537, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281819

RESUMEN

Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.


Asunto(s)
Antígenos Virales/inmunología , Diarrea Mucosa Bovina Viral/terapia , Bovinos/inmunología , Virus de la Diarrea Viral Bovina/inmunología , Vacunas Virales/administración & dosificación , Animales , Antígenos Virales/genética , Diarrea Mucosa Bovina Viral/inmunología , Diarrea Mucosa Bovina Viral/virología , Epítopos/inmunología
18.
Am J Vet Res ; 69(12): 1630-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046011

RESUMEN

OBJECTIVE: To inoculate white-tailed deer (Odocoileus virginianus) during the sixth or seventh week of gestation with bovine viral diarrhea virus (BVDV) and observe for signs of reproductive tract disease during a 182-day period. ANIMALS: 10 pregnant white-tailed deer (8 seronegative and 2 seropositive [control deer] for BVDV). PROCEDURES: Deer were inoculated with 1 of 2 deer-derived BVDV strains (RO3-20663 or RO3-24272). Serum anti-BVDV antibody titers were determined prior to and 21 or 35 days after inoculation. Virus isolation (VI) procedures were performed on tissues from fetuses and does that died and on blood samples collected from live fawns. Ear notch specimens obtained from live fawns were assessed by use of BVDV antigen-capture ELISA (ACE). RESULTS: Both RO3-20663-inoculated seropositive deer gave birth to apparently normal fawns. Among the RO3-24272-inoculated seronegative deer, 1 died, and 1 aborted and 1 resorbed their fetuses; among the RO3-20663-inoculated seronegative deer, 3 died, 1 aborted its fetus, and 1 gave birth to 2 fawns that were likely persistently infected. On the basis of VI and ACE results, those 2 fawns were positive for BVDV; both had no detectable neutralizing anti-BVDV antibodies in serum. CONCLUSIONS AND CLINICAL RELEVANCE: Reproductive tract disease that developed in pregnant white-tailed deer following BVDV inoculation was similar to that which develops in BVDV-exposed cattle. Methods developed for BVDV detection in cattle (VI, immunohistochemical evaluations, and ACE) can be applied in assessments of white-tailed deer. Fawns from does that had serum anti-BVDV antibodies prior to inoculation were protected against BVDV infection in utero.


Asunto(s)
Ciervos , Virus de la Diarrea Viral Bovina/patogenicidad , Enfermedades de los Genitales Femeninos/veterinaria , Animales , Anticuerpos Antivirales , Susceptibilidad a Enfermedades/veterinaria , Susceptibilidad a Enfermedades/virología , Femenino , Enfermedades de los Genitales Femeninos/virología , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Embarazo
19.
J Wildl Dis ; 44(3): 753-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18689667

RESUMEN

The susceptibility of wild ruminants, especially cervids, to bovine viral diarrhea virus (BVDV) has remained an enigma. Two white-tailed deer (Odocoileus virginianus) were submitted to the Animal Disease Research and Diagnostic Laboratory (ADRDL) in the fall of 2003 by the South Dakota Game Fish and Parks for chronic wasting disease (CWD) testing. Both animals were CWD negative. The animals were necropsied and histopathology, viral antigen detection, and virus isolation were performed. A noncytopathic (NCP) BVDV was isolated from the lungs and several other tissues of both animals. Formalin-fixed ear notches from both animals were positive for BVDV antigen by immunohistochemistry. The BVDV isolates were typed with the use of polymerase chain reaction in 5' untranslated region (UTR) and one isolate was typed a Type 2a and the other a Type 1b. Future field surveys to determine the incidence of BVDV along with experimental studies to determine if white-tailed deer fawns can be persistently infected with BVDV are needed.


Asunto(s)
Diarrea Mucosa Bovina Viral/epidemiología , Ciervos/virología , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Reservorios de Enfermedades/veterinaria , Regiones no Traducidas 5'/química , Regiones no Traducidas 5'/genética , Animales , Animales Salvajes/virología , Diarrea Mucosa Bovina Viral/virología , Bovinos , ADN Viral/química , ADN Viral/genética , Virus de la Diarrea Viral Bovina/genética , Reservorios de Enfermedades/virología , Oído/virología , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , South Dakota/epidemiología , Especificidad de la Especie
20.
Vet Clin North Am Food Anim Pract ; 24(1): 87-104, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18299033

RESUMEN

In this article we cover the immunologic response as it develops, the components of passive immunity, and the immune response of young calves. We discuss interference from maternal immunity in the development of specific immunity and vaccine strategies for developing protection against pathogens in calves.


Asunto(s)
Bovinos/inmunología , Inmunidad Materno-Adquirida , Inmunización Pasiva/veterinaria , Vacunación/veterinaria , Animales , Animales Recién Nacidos/inmunología , Formación de Anticuerpos/inmunología , Calostro/inmunología , Femenino , Inmunidad Celular/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda