Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País como asunto
Tipo del documento
Publication year range
1.
PLOS Digit Health ; 3(6): e0000293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905166

RESUMEN

Models for digital triage of sick children at emergency departments of hospitals in resource poor settings have been developed. However, prior to their adoption, external validation should be performed to ensure their generalizability. We externally validated a previously published nine-predictor paediatric triage model (Smart Triage) developed in Uganda using data from two hospitals in Kenya. Both discrimination and calibration were assessed, and recalibration was performed by optimizing the intercept for classifying patients into emergency, priority, or non-urgent categories based on low-risk and high-risk thresholds. A total of 2539 patients were eligible at Hospital 1 and 2464 at Hospital 2, and 5003 for both hospitals combined; admission rates were 8.9%, 4.5%, and 6.8%, respectively. The model showed good discrimination, with area under the receiver-operator curve (AUC) of 0.826, 0.784 and 0.821, respectively. The pre-calibrated model at a low-risk threshold of 8% achieved a sensitivity of 93% (95% confidence interval, (CI):89%-96%), 81% (CI:74%-88%), and 89% (CI:85%-92%), respectively, and at a high-risk threshold of 40%, the model achieved a specificity of 86% (CI:84%-87%), 96% (CI:95%-97%), and 91% (CI:90%-92%), respectively. Recalibration improved the graphical fit, but new risk thresholds were required to optimize sensitivity and specificity.The Smart Triage model showed good discrimination on external validation but required recalibration to improve the graphical fit of the calibration plot. There was no change in the order of prioritization of patients following recalibration in the respective triage categories. Recalibration required new site-specific risk thresholds that may not be needed if prioritization based on rank is all that is required. The Smart Triage model shows promise for wider application for use in triage for sick children in different settings.

2.
PLOS Digit Health ; 3(7): e0000311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949998

RESUMEN

Infectious diseases in neonates account for half of the under-five mortality in low- and middle-income countries. Data-driven algorithms such as clinical prediction models can be used to efficiently detect critically ill children in order to optimize care and reduce mortality. Thus far, only a handful of prediction models have been externally validated and are limited to neonatal in-hospital mortality. The aim of this study is to externally validate a previously derived clinical prediction model (Smart Triage) using a combined prospective baseline cohort from Uganda and Kenya with a composite endpoint of hospital admission, mortality, and readmission. We evaluated model discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots with age subsets (< 30 days, ≤ 2 months, ≤ 6 months, and < 5 years). Due to reduced performance in neonates (< 1 month), we re-estimated the intercept and coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants under the age of five (under-5) were included in the analysis. The proportion with an endpoint ranged from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk thresholds (CI) were 85% (83%-87%) and 68% (58%-76%) for children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC of 0.83 (95% CI: 0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively. The updated Smart Triage performs well in its predictive ability across different age groups and can be incorporated into current triage guidelines at local healthcare facilities. Additional validation of the model is indicated, especially for the neonatal model.

3.
Viruses ; 14(12)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560824

RESUMEN

BACKGROUND AND METHODS: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. RESULTS: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. CONCLUSIONS: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.


Asunto(s)
Alphacoronavirus , Astroviridae , COVID-19 , Quirópteros , Herpesviridae , Virus ARN , Animales , Astroviridae/genética , Kenia/epidemiología , Filogenia , Retroviridae , Virus ARN/genética , SARS-CoV-2
4.
Artículo en Inglés | MEDLINE | ID: mdl-30637398

RESUMEN

We report here the genome sequence of a Commensalibacter sp. strain (AMU001) isolated from honey bees (Apis mellifera) from Seychelles. By combining long- and short-read sequencing technologies, we produced the first complete reference genome assembly for the Commensalibacter genus. We anticipate that this will aid future comparative and functional genomic studies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda