Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Phys Chem B ; 113(13): 4147-51, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19006274

RESUMEN

Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

2.
J Chem Phys ; 130(5): 054113, 2009 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19206964

RESUMEN

In view of the wide success of molecular quasichemical theory of liquids, this paper develops the soft-cutoff version of that theory. This development allows molecular dynamics simulations to be used for the calculation of solvation free energy, whereas the hard-cutoff version of the theory needs Monte Carlo simulations. This development also shows how fluids composed of molecules with smooth repulsive interactions can be treated analogously to the molecular-field theory of the hard-sphere fluid. In the treatment of liquid water, quasichemical theory with soft-cutoff conditioning does not change the fundamental convergence characteristics of the theory using hard-cutoff conditioning. In fact, hard cutoffs are found here to work better than softer ones in that case.

3.
Langmuir ; 23(2): 659-66, 2007 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-17209617

RESUMEN

Storage of pure CO2 and CH4 and separation of their binary mixture in three different classes of nanostructured adsorbents--silicalite, C168 schwarzite, and IRMOF-1--have been compared at room temperature using atomistic simulation. CH4 is represented as a spherical Lennard-Jones molecule, and CO2 is represented as a rigid linear molecule with a quadrupole moment. For pure component adsorption, CO2 is preferentially adsorbed than CH4 in all the three adsorbents over the pressure range under this study, except in C168 schwarzite at high pressures. The simulated adsorption isotherms and isosteric heats match closely with available experimental data. A dual-site Langmuir-Freundlich equation is used to fit the isotherms satisfactorily. Compared to silicalite and C168 schwarzite, the gravimetric adsorption capacity of pure CH4 and CO2 separately in IRMOF-1 is substantially larger. This implies that IRMOF-1 might be a potential storage medium for CH4 and CO2. For adsorption from an equimolar binary mixture, CO2 is preferentially adsorbed in all three adsorbents. Predictions of mixture adsorption with the ideal-adsorbed solution theory on the basis of only pure component adsorption agree well with simulation results. Though IRMOF-1 has a significantly higher adsorption capacity than silicalite and C168 schwarzite, the adsorption selectivity of CO2 over CH4 is found to be similar in all three adsorbents.

4.
J Am Chem Soc ; 128(14): 4650-7, 2006 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-16594702

RESUMEN

Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

5.
J Chem Phys ; 124(23): 234101, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16821901

RESUMEN

An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

6.
Langmuir ; 21(6): 2267-72, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15752015

RESUMEN

Molecular simulations of chiral molecules in porous heterochiral materials were performed to investigate fundamental adsorption properties and possibilities for production of homochiral porous solids. Zeolite BEA polymorph A and zeotype UCSB-7K each provide separated pores of opposite chirality. Single enantiomer and racemic mixture adsorption results are presented and indicate that significant equilibrium enantiomeric excesses of 40-70% in UCSB-7K and 10% in BEA can be achieved. Larger, better-fitting molecules display higher enantiomeric excesses. For dimethylallene, which moves on molecular dynamics time scales in UCSB-7K, self-diffusivities vary by almost an order of magnitude between the two opposite-handed UCSB-7K pores for a given enantiomer. The predicted properties indicate that equilibrium and nonequilibrium strategies using related homochiral materials for separations may be successful. To this end, a discussion of strategies for selectively blocking pores of one chirality on the basis of enantiomer segregation is provided.

7.
Langmuir ; 20(1): 150-6, 2004 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-15745013

RESUMEN

A combination of experimental and computational studies of adsorption from liquid-phase mixtures of linear alkanes in the zeolite silicalite is presented here. Configurational biased grand canonical Monte Carlo simulations combined with identity-swap moves are used to equilibrate the simulations in reasonable times. Interesting trends observed in experiments have been captured quantitatively by simulations. A siting analysis of the simulation data reveals that, during adsorption from a liquid mixture, shorter alkanes prefer the zigzag channels and longer alkanes concentrate in the straight channels of silicalite.


Asunto(s)
Alcanos/química , Simulación por Computador , Modelos Químicos , Silicatos/química , Zeolitas/química , Adsorción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda