Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
Nat Immunol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223350

RESUMEN

Deciphering the composition of the tumor microenvironment (TME) is critical for understanding tumorigenesis and to design immunotherapies. In the present study, we mapped genetic effects on cell-type proportions using single-cell and bulk RNA sequencing data, identifying 3,494 immunity quantitative trait loci (immunQTLs) across 23 cancer types from The Cancer Genome Atlas. Functional annotation revealed regulatory potential and we further assigned 1,668 genes that regulate TME composition. We constructed a combined immunQTL map by integrating data from European and Chinese colorectal cancer (CRC) samples. A polygenic risk score that incorporates these immunQTLs and hits on a genome-wide association study outperformed in CRC risk stratification within 447,495 multiethnic individuals. Using large-scale population cohorts, we identified that the immunQTL rs1360948 is associated with CRC risk and prognosis. Mechanistically, the rs1360948-G-allele increases CCL2 expression, recruiting regulatory T cells that can exert immunosuppressive effects on CRC progression. Blocking the CCL2-CCR2 axis enhanced anti-programmed cell death protein 1 ligand therapy. Finally, we have established a database (CancerlmmunityQTL2) to serve the research community and advance our understanding of immunogenomic interactions in cancer pathogenesis.

2.
J Cell Mol Med ; 28(16): e70037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39183260

RESUMEN

Ubiquitin like modifier activating enzyme 1 (UBA1) plays an important role in immune regulation and cellular function. However, the functional mechanism and role of UBA1 in pan-cancer have not been fully elucidated and its value in haematological tumours (diffuse large B cell lymphoma (DLBC/DLBCL) and acute myeloid leukaemia (AML/LAML)) has not been explored. We conducted a comprehensive analysis of the functional mechanism and role of UBA1 in pan-cancer using multiple databases, including differential expression analysis, clinical pathological staging analysis, prognosis analysis and immune analysis. Then, we confirmed the function of UBA1 in haematological tumours through cell experiments. The results showed that the expression of UBA1 was significantly increased in most cancers and the differential expression of UBA1 was mainly concentrated in digestive tumours, haematological tumours and brain tumours. Moreover, the high expression of UBA1 had poor prognosis in most tumours, which may be related to its involvement in various cancer-related pathways such as cell cycle, as well as its methylation level, protein phosphorylation level, immune cell infiltration and immune therapy response. Cell experiments have confirmed that UBA1 can significantly regulate the cycle progression and apoptosis of DLBCL cells and AML cells. Therefore, UBA1 may be a potential therapeutic target for haematological tumours. In summary, our study not only comprehensively analysed the functional mechanisms and clinical value of UBA1 in pan-cancer, but also validated for the first time the regulatory role of UBA1 in haematological tumours.


Asunto(s)
Biología Computacional , Regulación Neoplásica de la Expresión Génica , Enzimas Activadoras de Ubiquitina , Humanos , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Pronóstico , Biología Computacional/métodos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/genética , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Apoptosis , Proliferación Celular
3.
J Cell Mol Med ; 28(3): e18084, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38130025

RESUMEN

IRF family genes have been shown to be crucial in tumorigenesis and tumour immunity. However, information about the role of IRF in the systematic assessment of pan-cancer and in predicting the efficacy of tumour therapy is still unknown. In this work, we performed a systematic analysis of IRF family genes in 33 tumour samples, including expression profiles, genomics and clinical characteristics. We then applied Single-Sample Gene-Set Enrichment Analysis (ssGSEA) to calculate IRF-scores and analysed the impact of IRF-scores on tumour progression, immune infiltration and treatment efficacy. Our results showed that genomic alterations, including SNPs, CNVs and DNA methylation, can lead to dysregulation of IRFs expression in tumours and participate in regulating multiple tumorigenesis. IRF-score expression differed significantly between 12 normal and tumour samples and the impact on tumour prognosis and immune infiltration depended on tumour type. IRF expression was correlated to drug sensitivity and to the expression of immune checkpoints and immune cell infiltration, suggesting that dysregulation of IRF family expression may be a critical factor affecting tumour drug response. Our study comprehensively characterizes the genomic and clinical profile of IRFs in pan-cancer and highlights their reliability and potential value as predictive markers of oncology drug efficacy. This may provide new ideas for future personalized oncology treatment.


Asunto(s)
Neoplasias , Humanos , Biomarcadores , Carcinogénesis , Transformación Celular Neoplásica , Inmunoterapia , Reproducibilidad de los Resultados , Microambiente Tumoral , Factores Reguladores del Interferón
4.
Apoptosis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008196

RESUMEN

Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.

5.
Apoptosis ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581529

RESUMEN

Since the discovery of copper induces cell death(cuprotosis) in 2022, it has been one of the biggest research hotspots. cuprotosis related genes (CRGs) has been demonstrated to be a potential therapeutic target for cancer, however, the molecular mechanism of CRGs in coronavirus disease 2019 (COVID-19) infected in DLBCL patients has not been reported yet. Therefore, our research objective is first to elucidate the mechanism and role of CRGs in COVID-19. Secondly, we conducted univariate and multivariate analysis and machine learning to screen for CRGs with common expression differences in COVID-19 and DLBCL. Finally, the functional role and immune mechanism of genes in DLBCL were confirmed through cell experiments and immune analysis. The research results show that CRGs play an important role in the occurrence and development of COVID-19. Univariate analysis and machine learning confirm that dihydrolipoamide dehydrogenase (DLD) is the common key gene of COVID-19 and DLBCL. Inhibiting the expression of DLD can significantly inhibit the cycle progression and promote cell apoptosis of DLBCL cells and can target positive regulation of Lysine-specific demethylase 1 (LSD1, also known as KDM1A) to inhibit the proliferation of DLBCL cells and promote cell apoptosis. The immune analysis results show that high-expression of DLD may reduce T cell-mediated anti-tumor immunity by regulating immune infiltration of CD8 + T cells and positively regulating immune checkpoints LAG3 and CD276. Reducing the expression of DLD can effectively enhance T cell-mediated anti-tumor immunity, thereby clearing cancer cells and preventing cancer growth. In conclusion, DLD may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our research provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL.

6.
Gastroenterology ; 165(5): 1151-1167, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541527

RESUMEN

BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.

7.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802731

RESUMEN

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta/genética , Estudio de Asociación del Genoma Completo , Genes de Plantas , Genoma de Planta , Filogenia
8.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084264

RESUMEN

MOTIVATION: Feature selection is a powerful dimension reduction technique which selects a subset of relevant features for model construction. Numerous feature selection methods have been proposed, but most of them fail under the high-dimensional and low-sample size (HDLSS) setting due to the challenge of overfitting. RESULTS: We present a deep learning-based method-GRAph Convolutional nEtwork feature Selector (GRACES)-to select important features for HDLSS data. GRACES exploits latent relations between samples with various overfitting-reducing techniques to iteratively find a set of optimal features which gives rise to the greatest decreases in the optimization loss. We demonstrate that GRACES significantly outperforms other feature selection methods on both synthetic and real-world datasets. AVAILABILITY AND IMPLEMENTATION: The source code is publicly available at https://github.com/canc1993/graces.


Asunto(s)
Programas Informáticos , Tamaño de la Muestra
9.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052532

RESUMEN

MOTIVATION: Protein representation learning methods have shown great potential to many downstream tasks in biological applications. A few recent studies have demonstrated that the self-supervised learning is a promising solution to addressing insufficient labels of proteins, which is a major obstacle to effective protein representation learning. However, existing protein representation learning is usually pretrained on protein sequences without considering the important protein structural information. RESULTS: In this work, we propose a novel structure-aware protein self-supervised learning method to effectively capture structural information of proteins. In particular, a graph neural network model is pretrained to preserve the protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral angle perspective, respectively. Furthermore, we propose to leverage the available protein language model pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation between the sequential information in the protein language model and the structural information in the specially designed graph neural network model via a novel pseudo bi-level optimization scheme. We conduct experiments on three downstream tasks: the binary classification into membrane/non-membrane proteins, the location classification into 10 cellular compartments, and the enzyme-catalyzed reaction classification into 384 EC numbers, and these experiments verify the effectiveness of our proposed method. AVAILABILITY AND IMPLEMENTATION: The Alphafold2 database is available in https://alphafold.ebi.ac.uk/. The PDB files are available in https://www.rcsb.org/. The downstream tasks are available in https://github.com/phermosilla/IEConv\_proteins/tree/master/Datasets. The code of the proposed method is available in https://github.com/GGchen1997/STEPS_Bioinformatics.


Asunto(s)
Lenguaje , Proteínas de la Membrana , Secuencia de Aminoácidos , Bases de Datos Factuales , Aprendizaje Automático Supervisado
10.
Theor Appl Genet ; 137(9): 199, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110238

RESUMEN

KEY MESSAGE: A new stripe rust resistance gene YrBDT in Chinese landrace wheat Baidatou was mapped to a 943.6-kb interval on chromosome arm 6DS and co-segregated with a marker CAPS3 developed from candidate gene TraesCS6D03G0027300. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating foliar disease of wheat. Chinese landrace wheat Baidatou has shown high resistance to a broad spectrum of Pst races at both the seedling and adult-plant stages for decades in the Longnan region of Gansu province, a hot spot for stripe rust epidemics. Here, we report fine mapping and candidate gene analysis of stripe rust resistance gene YrBDT in Baidatou. Analysis of F1, F2 plants and F2:3 lines indicated that resistance in Baidatou to Pst race CYR31 was conferred by a single dominant gene, temporarily designated YrBDT. Bulked segregant exome capture sequencing (BSE-seq) analysis revealed 61 high-confidence polymorphic SNPs concentrated in a 5.4-Mb interval at the distal of chromosome arm 6DS. Several SNPs and InDels were also identified by genome mining of DNA sampled from the parents and contrasting bulks. The YrBDT locus was mapped to a 943.6-kb (4,658,322-5,601,880 bp) genomic region spanned by markers STS2 and STS3 based on IWGSC RefSeq v2.1, including five putative disease resistance genes. There was high collinearity of the target interval among Chinese Spring RefSeq v2.1, Ae. tauschii AL8/78 and Fielder genomes. The expression level of TraesCS6D03G0027300 showed significant association with Pst infection, and a gene-specific marker CAPS3 developed from TraesCS6D03G0027300 co-segregated with YrBDT suggesting this gene as a candidate of YrBDT. The resistance gene and flanking markers can be used in marker-assisted selection for improvement of stripe rust resistance.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Genes de Plantas , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Triticum , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Marcadores Genéticos , Basidiomycota/patogenicidad , Puccinia/patogenicidad , Ligamiento Genético , Fenotipo
11.
PLoS Comput Biol ; 19(6): e1011190, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276238

RESUMEN

Recent advances in biological technologies, such as multi-way chromosome conformation capture (3C), require development of methods for analysis of multi-way interactions. Hypergraphs are mathematically tractable objects that can be utilized to precisely represent and analyze multi-way interactions. Here we present the Hypergraph Analysis Toolbox (HAT), a software package for visualization and analysis of multi-way interactions in complex systems.


Asunto(s)
Cromosomas , Programas Informáticos
12.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735921

RESUMEN

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Asunto(s)
Riñón , Imagen por Resonancia Magnética , Tomografía Computarizada de Emisión de Fotón Único , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ligandos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Línea Celular Tumoral , Medios de Contraste/química , Femenino , Ratones Endogámicos BALB C , Humanos , Distribución Tisular , Neoplasias/diagnóstico por imagen , Nanopartículas de Magnetita/química , Nanopartículas/química
13.
Arch Toxicol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012505

RESUMEN

Despite genome-wide association studies (GWAS) have identified more than 200 risk loci associated with colorectal cancer (CRC), the causal genes or risk variants within these loci and their biological functions remain not fully revealed. Recently, the genomic locus 19q13.2, with the lead SNP rs1800469 was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here we employed an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk locus 19q13.2. Notably, we found that RPS19 exhibited the most significant effect among the identified genes and acted as a critical oncogene facilitating CRC cell proliferation. Subsequently, combining integrative fine-mapping analysis and a large-scale population study consisting of 6027 cases and 6099 controls, we prioritized rs1025497 as a potential causal candidate for CRC risk, demonstrating that rs1025497[A] allele significantly reduced the risk of CRC (OR 0.70, 95% confidence interval = 0.56-0.83, P = 1.12 × 10-6), which was further validated in UK Biobank cohort comprising 5,313 cases and 21,252 controls. Mechanistically, we experimentally elucidated that variant rs1025497 might acted as an allele-specific silencer, inhibiting the expression level of oncogene RPS19 mediated by the transcription suppressive factor HBP1. Taken together, our sturdy unveils the significant role of RPS19 during CRC pathogenesis and delineates its distal regulatory mechanism mediated by rs1025497, advancing our understanding of the etiology of CRC and provided new insights into the personalized medicine of human cancer.

14.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795520

RESUMEN

Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.


Asunto(s)
Conducta Alimentaria/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Masculino , Ratones , Microscopía Fluorescente , Red Nerviosa , Imagen Óptica , Núcleo Hipotalámico Paraventricular/citología , Receptor de Melanocortina Tipo 3/agonistas , Análisis de la Célula Individual
15.
Eye Contact Lens ; 50(6): 249-254, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687606

RESUMEN

OBJECTIVES: To investigate the changes in the thickness of epithelium and stroma and their relationship with corneal curvature following the cessation of overnight orthokeratology for a period of 1 month. METHODS: This prospective study consecutively included 20 juveniles (20 right eyes) who had undergone overnight orthokeratology for a minimum of one year and were willing to discontinue the treatment. The study measured and compared epithelial and corneal curvature using optical coherence tomography and Medmont topographer at the first day of cessation and 1 month after cessation. In addition, changes in uncorrected visual acuity and refractive error before and after the cessation of the treatment were analyzed. RESULTS: The study found a significant increase in the thickness of the epithelium in the central 2-mm area after the cessation of the treatment (t = -4.807, P <0.001). Moreover, the stroma in the paracentral area (2-5 mm) and peripheral area (5-6 mm) showed a general thinning trend ( P =0.016, P =0.016). Regarding the correlation analysis, the change in central epithelial thickness (ΔCET) was significantly correlated with the change in paracentral corneal curvature (ΔPCCC) (r=0.610, P =0.007) and the change in peripheral corneal curvature (ΔPCC) (r=0.597, P =0.009). Similarly, the change in central stromal thickness (ΔCST) was significantly correlated with the change in central corneal curvature (ΔCCC) (r=0.500, P =0.035), ΔPCCC (r=0.700, P =0.001), and ΔPCC (r=0.635, P =0.005). CONCLUSIONS: The study found that the corneal remodeling induced by orthokeratology was reversible after the cessation of the treatment. Specifically, changes in the epithelium were found to be more prominent in the central area, while changes in the stroma were more pronounced in the paracentral and peripheral areas. In addition, the study established a significant correlation between central corneal remodeling and changes in curvature.


Asunto(s)
Sustancia Propia , Topografía de la Córnea , Epitelio Corneal , Miopía , Procedimientos de Ortoqueratología , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Procedimientos de Ortoqueratología/métodos , Estudios Prospectivos , Sustancia Propia/patología , Tomografía de Coherencia Óptica/métodos , Masculino , Epitelio Corneal/patología , Epitelio Corneal/diagnóstico por imagen , Femenino , Agudeza Visual/fisiología , Miopía/terapia , Miopía/fisiopatología , Miopía/patología , Niño , Adolescente , Refracción Ocular/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-39091244

RESUMEN

PURPOSE: The purpose of this study is to dynamically assess variations in tunnel diameters following anterior cruciate ligament reconstruction (ACLR) and investigate correlations with patient-reported outcomes (PROs) and graft maturity based on signal-to-noise quotient (SNQ). METHODS: Tunnel diameter and tunnel position were measured using three-dimensional models derived from computed tomography (CT) data. Postoperative graft maturity and integration were evaluated using magnetic resonance imaging (MRI). Clinical outcomes were assessed through PROs, which included the International Knee Documentation Committee Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Scores and Lysholm scores. The correlation between tunnel enlargement extent, PROs and SNQ values, as well as correlations between confounding factors, tunnel diameter differences and SNQ were analyzed. RESULTS: A total of 73 participants underwent primary ACLR and scheduled follow-ups. At the segment of the articular aperture, the femoral tunnel was enlarged by 32.3% to 10.4 ± 1.6 mm (p < 0.05), and the tibial tunnel was widened by 17.2% to 9.6 ± 1.2 mm (p < 0.05) at the 6-month follow-up. At 1 year postoperatively, diameters at the articular aperture were not further increased on the femoral (n.s.) and tibial (n.s.) sides. In early postoperative follow-up, the femoral tunnel was anteriorly and distally shifted, coupled with posterior and lateral deviation involving the tibial side, exhibiting minimal migration at 1-year follow-up. The degree of tunnel widening was not correlated with PROs and SNQ values. Age, gender, body mass index (BMI), time from surgery to follow-up, concomitant injuries and autograft type were not correlated with tunnel diameter differences and SNQ. CONCLUSIONS: The femoral and tibial bone tunnels exhibited eccentrical widening and gradually stabilized at 1 year following ACLR. Furthermore, the enlarged bone tunnels were not correlated with unsatisfied PROs and inferior graft maturity. LEVEL OF EVIDENCE: Level IV.

17.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125774

RESUMEN

Fragrance is a valuable trait in rice varieties, with its aroma significantly influencing consumer preference. In this study, we conducted comprehensive metabolome and transcriptome analyses to elucidate the genetic and biochemical basis of fragrance in the Shangsixiangnuo (SSXN) variety, a fragrant indica rice cultivated in Guangxi, China. Through sensory evaluation and genetic analysis, we confirmed SSXN as strongly fragrant, with an 806 bp deletion in the BADH2 gene associated with fragrance production. In the metabolome analysis, a total of 238, 233, 105 and 60 metabolic compounds exhibited significant changes at the seedling (S), reproductive (R), filling (F), and maturation (M) stages, respectively. We identified four compounds that exhibited significant changes in SSXN across all four development stages. Our analyses revealed a significant upregulation of 2-acetyl-1-pyrroline (2AP), the well-studied aromatic compound, in SSXN compared to the non-fragrant variety. Additionally, correlation analysis identified several metabolites strongly associated with 2AP, including ethanone, 1-(1H-pyrrol-2-yl)-, 1H-pyrrole, and pyrrole. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) analysis highlighted the magenta and yellow modules as particularly enriched in aroma-related metabolites, providing insights into the complex aromatic compounds underlying the fragrance of rice. In the transcriptome analysis, a total of 5582, 5506, 4965, and 4599 differential expressed genes (DEGs) were identified across the four developmental stages, with a notable enrichment of the common pathway amino sugar and nucleotide sugar metabolism in all stages. In our correlation analysis between metabolome and transcriptome data, the top three connected metabolites, phenol-, 3-amino-, and 2AP, along with ethanone, 1-(1H-pyrrol-2-yl)-, exhibited strong associations with transcripts, highlighting their potential roles in fragrance biosynthesis. Additionally, the downregulated expression of the P4H4 gene, encoding a procollagen-proline dioxygenase that specifically targets proline, in SSXN suggests its involvement in proline metabolism and potentially in aroma formation pathways. Overall, our study provides comprehensive insights into the genetic and biochemical mechanisms underlying fragrance production in rice, laying the foundation for further research aimed at enhancing fragrance quality in rice breeding programs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Oryza , Pirroles , Transcriptoma , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Pirroles/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Odorantes/análisis
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 150-156, 2024 Feb 10.
Artículo en Zh | MEDLINE | ID: mdl-38311552

RESUMEN

OBJECTIVE: To assess the prognostic value of methylation of interferon regulatory factor 6 (IRF6) gene promoter in patients diagnosed with Kidney renal clear cell carcinoma (KIRC). METHODS: The primary lesions of fifty KIRC patients who were diagnosed at the First Affiliated Hospital of Nanjing Medical University from January 2016 to January 2020 were collected. The expression of IRF6 protein was determined with an immunohistochemical method. The correlation between the level of IRF6 expression and survival and/or metastasis status was analyzed. The mRNA and protein levels of the IRF6 in KIRC and normal renal tissues were compared by using bioinformatic tools. The difference in the methylation rate of the IRF6 gene promoter between tumor and adjacent tissues was analyzed by searching the online databases. Statistical analysis was carried out for the methylation status of the IRF6 gene promoter region to select those negatively correlated with the overall survival (OS) among the patients. In vitro experiments were conducted with cell lines to verify the correlation between the status of promoter methylation and transcription level of the IRF6 gene. RESULTS: The mRNA and protein levels of the IRF6 gene in KIRC tissues were significantly lower than those of the normal controls, and this was more prominent in patients who had died or developed metastasis. The extent of IRF6 gene promoter methylation in the KIRC tissues was much higher compared with that of the adjacent normal renal tissues. There was a significant negative correlation between the methylation of the IRF6 gene promoter and mRNA level of the IRF6 (R = -0.52). The higher methylation degree in the IRF6 gene promoter regions cg12034118 and cg16030177, the shorter the OS and worse prognosis in the patients. Only twenty CpG sites in cg12034118 were confirmed to be highly methylated in KIRC cell lines. The transcription level of the IRF6 gene was upregulated in a time- and dose-dependent manner after the treatment with demethylation reagent 5-azadeoxycytidine. CONCLUSION: The methylation of IRF6 gene promoter in the renal tissues of KIRC patients is closely correlated with the OS. Cg12034118 may provide a promising biomarker for laboratory detection, and its high methylation rate has certain reference value for the prognosis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Neoplasias Renales/genética , Carcinoma de Células Renales/genética , Pronóstico , Metilación de ADN , Factores Reguladores del Interferón/genética , Riñón/patología , Regiones Promotoras Genéticas , ARN Mensajero/genética
19.
Chin J Traumatol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39142966

RESUMEN

PURPOSE: To compare the effects of empirical and modified hemostatic resuscitation for liver blast injury combined with seawater immersion. METHODS: Thirty rabbits were subjected to liver blast injury combined with seawater immersion, and were then divided into 3 groups randomly (n = 10 each): group A (no treatment after immersion), group B (empirical resuscitation with 20 mL hydroxyethyl starch, 50 mg tranexamic acid, 25 IU prothrombin complex concentrate and 50 mg/kg body weight fibrinogen concentrate), and group C (modified resuscitation with additional 10 IU prothrombin complex concentrate and 20 mg/kg body weight fibrinogen concentrate based on group B). Blood samples were gathered at specified moments for assessment of thromboelastography, routine coagulation test, and biochemistry. Mean arterial pressure, heart rate, and survival rate were also documented at each time point. The Kolmogorov-Smirnov test was used to examine the normality of data distribution. Multigroup comparisons were conducted with one-way ANOVA. RESULTS: Liver blast injury combined with seawater immersion resulted in severe coagulo-fibrinolytic derangement as indicated by prolonged prothrombin time (s) (11.53 ± 0.98 vs. 7.61 ± 0.28, p<0.001), activated partial thromboplastin time (APTT) (s) (33.48 ± 6.66 vs. 18.23 ± 0.89, p<0.001), reaction time (R) (min) (5.85 ± 0.96 vs. 2.47 ± 0.53, p<0.001), decreased maximum amplitude (MA) (mm) (53.20 ± 5.99 vs. 74.92 ± 5.76, p<0.001) and fibrinogen concentration (g/L) (1.188 ± 0.29 vs. 1.890 ± 0.32, p = 0.003), and increased D-dimer concentration (mg/L) (0.379 ± 0.32 vs. 0.051 ± 0.03, p = 0.005). Both empirical and modified hemostatic resuscitation could improve the coagulo-fibrinolytic states and organ function, as indicated by shortened APTT and R values, decreased D-dimer concentration, increased fibrinogen concentration and MA values, lower concentration of blood urea nitrogen and creatine kinase-MB in group B and group C rabbits in comparison to that observed in group A. Further analysis found that the R values (min) (4.67 ± 0.84 vs. 3.66 ± 0.98, p = 0.038), APTT (s) (23.16 ± 2.75 vs. 18.94 ± 1.05, p = 0.001), MA (mm) (60.10 ± 4.74 vs. 70.21 ± 3.01, p < 0.001), and fibrinogen concentration (g/L) (1.675 ± 0.21 vs. 1.937 ± 0.16, p = 0.013) were remarkably improved in group C than in group B at 2 h and 4 h after injury. In addition, the concentration of blood urea nitrogen (mmol/L) (24.11 ± 1.96 vs. 21.00 ± 3.78, p = 0.047) and creatine kinase-MB (U/L) (85.50 ± 13.60 vs. 69.74 ± 8.56, p = 0.013) were lower in group C than in group B at 6 h after injury. The survival rates in group B and group C were significantly higher than those in group A at 4 h and 6 h after injury (p < 0.001), however, there were no statistical differences in survival rates between group B and group C at each time point. CONCLUSIONS: Modified hemostatic resuscitation could improve the coagulation parameters and organ function better than empirical hemostatic resuscitation.

20.
Int J Cancer ; 153(3): 499-511, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087737

RESUMEN

Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.


Asunto(s)
Neoplasias Colorrectales , Grasas de la Dieta , Humanos , Estudios Prospectivos , Estudios de Casos y Controles , Grasas de la Dieta/efectos adversos , Factores de Riesgo , Ácidos Grasos/efectos adversos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda