Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520738

RESUMEN

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Asunto(s)
Mutación , Empalme del ARN , Atrofias Musculares Espinales de la Infancia , Proteína 2 para la Supervivencia de la Neurona Motora , Femenino , Humanos , Alelos , Compuestos Azo , Exones/genética , Células HEK293 , Pirimidinas/uso terapéutico , Empalme del ARN/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Recién Nacido , Lactante
2.
Fish Shellfish Immunol ; 146: 109407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281612

RESUMEN

As an ancient species with both conservation and commercial value, Sturgeon's inflammatory regulation mechanism is a research point. Nucleotide-binding and oligomerization domain-containing proteins 1 and 2 (NOD1/2) are classical intracellular pattern recognition receptors (PRRs) in immunity of anti-bacterial infection. However, the characterization and function of NOD1/2 in Sturgeon are still unclear. In this study, we analyzed the synteny relationship of NOD1/2 genes between Acipenser ruthenus and representative fishes at the genome-level. Results showed that the ArNOD2 collinear genes pair was present in all representative fishes. The duplicated ArNOD1/2 genes were under purifying selection during evolution as indicated by their Ka/Ks values. To explore the function of NOD1/2, we further investigated their expression patterns and the effects of pathogenic infection, PAMPs treatment, and siRNA interference in Acipenser baerii, the sibling species of A. ruthenus. Results showed that both AbNOD1/2 were expressed at early developmental stages and in different tissues. Pathogenic infection in vivo and PAMPs treatment in vitro demonstrated that AbNOD1/2 could respond to pathogen stimulation. siRNA interference with AbNOD1/2 inhibited expression levels of RIPK2 and inflammatory cytokines compared to the control group after iE-DAP or MDP treatment. This study hinted that the AbNOD1/2 could stimulate the inflammatory cytokines response during evolutionary processes.


Asunto(s)
Infecciones Bacterianas , Moléculas de Patrón Molecular Asociado a Patógenos , Animales , Peces/genética , Citocinas , ARN Interferente Pequeño , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/genética
3.
Fish Shellfish Immunol ; 151: 109707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885802

RESUMEN

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.


Asunto(s)
Bagres , Enfermedades de los Peces , Vibriosis , Vibrio mimicus , Animales , Bagres/inmunología , Bagres/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio mimicus/inmunología , Susceptibilidad a Enfermedades/veterinaria , Susceptibilidad a Enfermedades/inmunología , Epidermis/inmunología , Epidermis/microbiología , Nutrientes
4.
Fish Shellfish Immunol ; 152: 109726, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944254

RESUMEN

The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virus(SVCV), a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)、Alcian Blue Periodic Acid-Schiff (AB-PAS)、transcriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.


Asunto(s)
Carpas , Enfermedades de los Peces , Perfilación de la Expresión Génica , Branquias , Intestinos , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Branquias/inmunología , Branquias/virología , Rhabdoviridae/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Carpas/inmunología , Carpas/genética , Perfilación de la Expresión Génica/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Intestinos/inmunología , Intestinos/virología , Inmunidad Innata/genética , Transcriptoma/inmunología , Inmunidad Mucosa
5.
Fish Shellfish Immunol ; 144: 109290, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104695

RESUMEN

Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1ß, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.


Asunto(s)
Enfermedades de los Peces , Carpa Dorada , Animales , Mananos/farmacología , Citocinas/genética , Macrófagos/metabolismo , Fagocitosis
6.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278337

RESUMEN

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Asunto(s)
Astacoidea , Salvia miltiorrhiza , Animales , Astacoidea/genética , Hemocitos , Hepatopáncreas , Funcion de la Barrera Intestinal , Fagocitosis , Polisacáridos/farmacología
7.
Appl Microbiol Biotechnol ; 108(1): 77, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204126

RESUMEN

The intestinal microbiota interacts with the host and plays an important role in the immune response, digestive physiology, and regulation of body functions. In addition, it is also well documented that the intestinal microbiota of aquatic animals are closely related to their growth rate. However, whether it resulted in different sizes of crayfish in the rice-crayfish coculture model remained vague. Here, we analyzed the intestinal microbiota characteristics of crayfish of three sizes in the same typical rice-crayfish coculture field by high-throughput sequencing technology combined with quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme activity, investigating the relationship between intestinal microbiota in crayfish and water and sediments. The results showed that the dominant intestinal microbiota of crayfish was significantly different between the large size group (BS), normal size group (NS), and small size group (SS), where Bacteroides and Candidatus_Bacilloplasma contributed to the growth of crayfish by facilitating food digestion through cellulolysis, which might be one of the potential factors affecting the difference in sizes. Follow-up experiments confirmed that the activity of lipase (LPS) and protease was higher in BS, and the relative expression of development-related genes, including alpha-amylase (α-AMY), myocyte-specific enhancer factor 2a (MEF2a), glutathione reductase (GR), chitinase (CHI), and ecdysone receptor (EcR), in BS was significantly higher than that in SS. These findings revealed the intestinal microbiota characteristics of crayfish of different sizes and their potential impact on growth, which is valuable for managing and manipulating the intestinal microbiota in crayfish to achieve high productivity in practice. KEY POINTS: • Significant differences in the dominant microflora of BS, NS, and SS in crayfish. • Cellulolysis might be a potential factor affecting different sizes in crayfish. • Adding Bacteroides and Candidatus_Bacilloplasma helped the growth of crayfish.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Oryza , Animales , Astacoidea , Alimentos Marinos , Bacteroides
8.
Artículo en Inglés | MEDLINE | ID: mdl-38191049

RESUMEN

Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.


Asunto(s)
Apetito , Complemento C1q , Animales , Apetito/genética , Complemento C1q/metabolismo , Complemento C1q/farmacología , Ingestión de Alimentos/fisiología , Peces/fisiología , Péptidos/genética , Péptidos/farmacología , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo
9.
Ecotoxicol Environ Saf ; 274: 116192, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461574

RESUMEN

To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.


Asunto(s)
Carpas , Enfermedad Hepática Inducida por Sustancias y Drogas , Éteres Difenilos Halogenados , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Éter/metabolismo , Éter/farmacología , Hepatopáncreas/metabolismo , Exposición Dietética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
10.
Fish Physiol Biochem ; 50(3): 941-954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38381278

RESUMEN

Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.


Asunto(s)
Peces , Gastrinas , Receptor de Colecistoquinina B , Animales , Gastrinas/metabolismo , Peces/fisiología , Peces/metabolismo , Receptor de Colecistoquinina B/metabolismo , Receptor de Colecistoquinina B/genética , Conducta Alimentaria/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Hipotálamo/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda