Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551071

RESUMEN

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Cistitis Intersticial , Receptor Toll-Like 3 , Urotelio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Proliferación Celular , Cistitis Intersticial/patología , Cistitis Intersticial/metabolismo , Cistitis Intersticial/genética , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Urotelio/patología , Urotelio/metabolismo
2.
Eur J Neurosci ; 60(1): 3629-3642, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697919

RESUMEN

Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.


Asunto(s)
Microglía , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Piroptosis , Transducción de Señal , Animales , Piroptosis/fisiología , Microglía/metabolismo , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Hipoxia de la Célula/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Cultivadas , Inflamasomas/metabolismo , Fenotipo , Hipoxia/metabolismo
3.
BMC Womens Health ; 24(1): 308, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783282

RESUMEN

BACKGROUND: Cervical mullerian adenosarcoma is a rare uterine sarcoma, especially in young women. Its pathological features are low-grade malignant tumors with bidirectional differentiation, and the degree of malignancy is similar to that of low-grade endometrial stromal sarcoma. This paper reports the case of a young asexual patient who has been closely followed up after tumor resection and has not had any recurrences. CASE PRESENTATION: A 20-year-old, young asexual woman was diagnosed with cervical mullerian adenosarcoma with sarcomatous overgrowth (MASO). Cervical tumor resection was performed after admission, and the resection margin was negative. After the operation, she refused to undergo secondary surgery due to fertility requirements and did not receive adjuvant treatment. The patient was closely followed up after the operation and has not yet relapsed. CONCLUSION: A young woman with cervical MASO did not receive adjuvant treatment after cervical tumor resection. For women with fertility requirements, close follow-ups should be conducted after the operation to guard against tumor recurrence and radical tumor resection should be performed as early as possible after the patient no longer requires their fertility.


Asunto(s)
Adenosarcoma , Neoplasias del Cuello Uterino , Neoplasias Uterinas , Humanos , Femenino , Adenosarcoma/cirugía , Adenosarcoma/patología , Adenosarcoma/diagnóstico , Adulto Joven , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias Uterinas/cirugía , Neoplasias Uterinas/patología , Neoplasias Uterinas/complicaciones , Neoplasias Uterinas/diagnóstico , Conducta Sexual
4.
PLoS Negl Trop Dis ; 18(3): e0012070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527073

RESUMEN

Snakebite envenomation is a significant global health issue that requires specific antivenom treatments. In Taiwan, available antivenoms target a variety of snakes, but none specifically target Trimeresurus gracilis, an endemic and protected species found in the high mountain areas of Taiwan. This study evaluated the effectiveness of existing antivenoms against T. gracilis venom, focusing on a bivalent antivenom developed for Trimeresurus stejnegeri and Protobothrops mucrosquamatus (TsPmAV), as well as monovalent antivenoms for Deinagkistrodon acutus (DaAV) and Gloydius brevicaudus (GbAV). Our research involved in vivo toxicity testing in mice and in vitro immunobinding experiments using (chaotropic) enzyme-linked immunosorbent assays, comparing venoms from four pit viper species (T. gracilis, T. stejnegeri, P. mucrosquamatus, and D. acutus) with three types of antivenoms. These findings indicate that TsPmAV partially neutralized T. gracilis venom, marginally surpassing the efficacy of DaAV. In vitro tests revealed that GbAV displayed higher binding capacities toward T. gracilis venom than TsPmAV or DaAV. Comparisons of electrophoretic profiles also reveal that T. gracilis venom has fewer snake venom C-type lectin like proteins than D. acutus, and has more P-I snake venom metalloproteases or fewer phospholipase A2 than G. brevicaudus, T. stejnegeri, or P. mucrosquamatus. This study highlights the need for antivenoms that specifically target T. gracilis, as current treatments using TsPmAV show limited effectiveness in neutralizing local effects in patients. These findings provide crucial insights into clinical treatment protocols and contribute to the understanding of the evolutionary adaptation of snake venom, aiding in the development of more effective antivenoms for human health.


Asunto(s)
Crotalinae , Mordeduras de Serpientes , Trimeresurus , Serpientes Venenosas , Humanos , Ratones , Animales , Antivenenos/uso terapéutico , Venenos de Serpiente , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Víboras/toxicidad
5.
J Dig Dis ; 25(3): 191-199, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38697920

RESUMEN

OBJECTIVE: To compare the detection rate and diagnostic accuracy of cardia polyps using endoscopy with blue laser imaging (BLI) and white-light imaging (WLI). METHODS: Patients were randomly divided into the BLI group and WLI group according to the endoscopic procedures. BLI followed by WLI was conducted in the BLI group, whereas WLI followed by BLI examination was conducted in the WLI group. The number, size, microstructure, and microvascular patterns of cardia polyps detected were recorded. Biopsy of the polyps was then performed. RESULTS: The detection rate of cardia polyps in the BLI group was higher than that in the WLI group (7.87% vs 4.22%, P = 0.018). The rate of overlooked lesions in the BLI group was lower than in the WLI group (0.64% vs 3.38%, P = 0.003). The diagnostic coincidence rate between magnifying BLI and histopathology was 88.16%. The sensitivity, specificity, positive predictive value and negative predictive value for the diagnosis of neoplastic lesions by magnifying endoscopy with BLI were 90.91%, 87.69%, 55.56%, and 98.28%, respectively. The most remarkable patterns for predicting inflammatory polyps were the prolonged and fine network patterns (sensitivity 71.43%, specificity 93.75%). Small round combined with honeycomb patterns were the most common among fundic gland polyps (sensitivity 80.00%, specificity 98.48%). Neoplastic lesions presented as villous or ridge-like combined with core vascular or unclear pattern for both microvascular and microstructure patterns. CONCLUSION: BLI is more effective than WLI in the detection and diagnosis of cardia polyps, and magnifying endoscopy with BLI may help diagnose such lesions.


Asunto(s)
Cardias , Estudios de Factibilidad , Neoplasias Gástricas , Humanos , Femenino , Masculino , Persona de Mediana Edad , Cardias/patología , Cardias/diagnóstico por imagen , Adulto , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Anciano , Pólipos/diagnóstico por imagen , Pólipos/diagnóstico , Gastroscopía/métodos , Sensibilidad y Especificidad , Valor Predictivo de las Pruebas , Rayos Láser
6.
J Affect Disord ; 349: 297-309, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211750

RESUMEN

BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.


Asunto(s)
Factor 7 Regulador del Interferón , Fármacos Neuroprotectores , Anciano , Animales , Humanos , Ratones , Encéfalo/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Ratones Endogámicos C57BL , Trastornos Neurocognitivos , Fototerapia
7.
Chem Sci ; 15(30): 12026-12035, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092107

RESUMEN

Alkyne annulation has been widely used in organic synthesis for the construction of azacycles with unique structural and physicochemical properties. However, the analogous transformation of fluoroalkynes remains a challenge and has seen limited progress. Herein we report a 1,2,3,4-tetrafunctionalization of polyfluoroalkynes for the divergent construction of 5-7-membered (E)-1,2-difluorovinyl azacycles. The use of the fluorine atom as a detachable "activator" not only obviates the use of any transition metal catalysts and oxidizing reagents, but also ensures the [3-5 + 2]-annulation and defluorinative functionalization of fluoroalkynes with high chemo-, regio-, and stereoselectivities. This method exhibits a broad substrate scope, good functional group tolerance, and excellent scalability, providing a modular platform for accessing fluorinated skeletons of medicinal and biological interest. The late-stage modification of complex molecules, the multi-component 1,2-diamination of fluoroalkyne, and the synthesis of valuable organofluorides from the obtained products further highlight the real-world utility of this fluoroalkyne annulation technology.

8.
Front Pharmacol ; 15: 1365639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021837

RESUMEN

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

9.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167024, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242180

RESUMEN

Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).


Asunto(s)
Deferoxamina , Ototoxicidad , Humanos , terc-Butilhidroperóxido/toxicidad , terc-Butilhidroperóxido/metabolismo , Deferoxamina/farmacología , Ototoxicidad/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Células Ciliadas Auditivas/metabolismo , Hierro/metabolismo
10.
ACS Appl Mater Interfaces ; 16(21): 27523-27531, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38745497

RESUMEN

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda