Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Microbiol ; 21(9): e13043, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099182

RESUMEN

Enterovirus 71 (EV71) is an emerging life-threatening pathogen particularly in the Asia-Pacific region. Apoptosis is a major pathogenic feature in EV71 infection. However, which molecular mechanism participating in EV71-induced apoptosis is not completely understood. Long noncoding RNAs (lncRNAs), a newly discovered class of regulatory RNA molecules, govern a wide range of biological functions through multiple regulatory mechanisms. Whether lncRNAs involved in EV71-induced apoptosis was investigated in this study. We conducted an apoptosis-oriented approach by integrating lncRNA and mRNA profilings. lnc-IRAK3-3 is down-regulated in EV71 infection and plays an important role in EV71 infection-induced apoptosis. Compensation of lnc-IRAK3-3 in EV71 infection promoted cell apoptosis wherein GADD45ß expression was increased and further triggered caspase3 and PARP cleavage. Using bioinformatics analysis and functional assays, lnc-IRAK3-3 could functionally sequester miR-891b and GADD45ß 3'UTR whereas miR-891b showed the inhibitory activity on GADD45ß expression. Taken together, lnc-IRAK3-3 has the ability capturing miR-891b to enforce GADD45ß expression and eventually promotes apoptosis. On the contrary, host cells suppress lnc-IRAK3-3 to relieve lnc-IRAK3-3-sequestered miR-891b, restrain GADD45ß, and attenuate apoptosis in EV71 infection that prevent host cells from severe damages. We discover a new molecular mechanism by which host cells counteract EV71-induced apoptosis through the lnc-IRAK3-3/miR-891b/GADD45ß axis partially.


Asunto(s)
Apoptosis/genética , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Biología Computacional , Infecciones por Enterovirus/genética , Interacciones Huésped-Patógeno/genética , Humanos , MicroARNs/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal/genética , Transcriptoma/genética
2.
BMC Genomics ; 18(1): 61, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28068916

RESUMEN

BACKGROUND: Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and regulate gene expression. Many databases are created to describe known TF complexes identified by either mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under different experiment conditions are available, making it possible to investigate condition-specific (cell type and/or physiologic state) TF complexes and their target genes. RESULTS: Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes (called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted 2,392 TF complexes and 13,504 high-confidence or 127,994 low-confidence regulatory interactions amongst TF complexes and their target genes. We validated our predictions by (i) comparing predicted TF complexes to external TF complex databases, (ii) validating selected target genes of TF complexes using ChIP-qPCR and RT-PCR experiments, and (iii) analysing target genes of select TF complexes using gene ontology enrichment to demonstrate the accuracy of our work. Finally, the predicted results above were integrated and employed to construct a CST database. CONCLUSIONS: We built up a methodology to construct the CST database, which contributes to the analysis of transcriptional regulation and the identification of novel TF-TF complex formation in a certain condition. This database also allows users to visualize condition-specific TF regulatory networks through a user-friendly web interface.


Asunto(s)
Inmunoprecipitación de Cromatina , Biología Computacional , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Bases de Datos Genéticas , Ontología de Genes , Humanos , Motivos de Nucleótidos , Transcripción Genética
3.
BMC Genomics ; 17(1): 632, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519564

RESUMEN

BACKGROUND: Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. DESCRIPTION: To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. CONCLUSIONS: The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the characteristic binding profiles and the density plot of normalized regulatory scores. The iTAR web server is a useful tool in identifying TF target genes from ChIP-seq/ChIP-chip data and discovering biological insights.


Asunto(s)
Inmunoprecipitación de Cromatina , Factor de Transcripción STAT3/metabolismo , Interfaz Usuario-Computador , Algoritmos , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/genética , Análisis de Secuencia de ADN
4.
Diabetes ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905124

RESUMEN

Exocrine-to-endocrine crosstalk in the pancreas is crucial to maintain beta cell function. However, the molecular mechanisms underlying this crosstalk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of beta cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces beta cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of beta cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared to controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine beta cells in mice.

5.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643304

RESUMEN

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferasa , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/farmacología , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Animales , Ratones , S-Adenosilmetionina/farmacología , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
6.
BMC Genomics ; 14: 310, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23656909

RESUMEN

BACKGROUND: Specific chromatin structures are associated with active or inactive gene transcription. The gene regulatory elements are intrinsically dynamic and alternate between inactive and active states through the recruitment of DNA binding proteins, such as chromatin-remodeling proteins. RESULTS: We developed a unique genome-wide method to discover DNA motifs associated with chromatin accessibility using formaldehyde-assisted isolation of regulatory elements with high-throughput sequencing (FAIRE-seq). We aligned the FAIRE-seq reads to the GM12878 diploid genome and subsequently identified differential chromatin-state regions (DCSRs) using heterozygous SNPs. The DCSR pairs represent the locations of imbalances of chromatin accessibility between alleles and are ideal to reveal chromatin motifs that may directly modulate chromatin accessibility. In this study, we used DNA 6-10mer sequences to interrogate all DCSRs, and subsequently discovered conserved chromatin motifs with significant changes in the occurrence frequency. To investigate their likely roles in biology, we studied the annotated protein associated with each of the top ten chromatin motifs genome-wide, in the intergenic regions and in genes, respectively. As a result, we found that most of these annotated motifs are associated with chromatin remodeling, reflecting their significance in biology. CONCLUSIONS: Our method is the first one using fully phased diploid genome and FAIRE-seq to discover motifs associated with chromatin accessibility. Our results were collected to construct the first chromatin motif database (CMD), providing the potential DNA motifs recognized by chromatin-remodeling proteins and is freely available at http://syslab.nchu.edu.tw/chromatin.


Asunto(s)
Cromatina/genética , Diploidia , Genoma Humano/genética , Motivos de Nucleótidos/genética , Análisis de Secuencia de ADN , Secuencia de Bases , Bases de Datos de Proteínas , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
7.
Urol Oncol ; 41(9): 380-386, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37202329

RESUMEN

Prostate cancer is the most common cancer diagnosis among men in the United States and the prevalence of prostate cancer survivors is growing. Cancer treatment and lasting or late effects of disease and treatment can adversely affect financial health, psychosocial well-being, and health-related quality of life for prostate cancer survivors, even many years after cancer diagnosis and treatment. These outcomes are important, especially because most men live for many years following a prostate cancer diagnosis. In this essay, we describe health care spending associated with prostate cancer, including patient out-of-pocket costs, and summarize research examining medical financial hardship and associations of financial hardship and psychosocial well-being and health-related quality of life among cancer survivors. We then discuss implications for health care delivery and opportunities to mitigate financial hardship for patients with prostate cancer and their families.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Neoplasias de la Próstata , Masculino , Humanos , Estados Unidos/epidemiología , Calidad de Vida/psicología , Supervivientes de Cáncer/psicología , Neoplasias/terapia , Próstata , Costo de Enfermedad , Estrés Financiero , Gastos en Salud
8.
Stem Cell Reports ; 18(3): 618-635, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36868230

RESUMEN

Progenitor cells capable of self-renewal and differentiation in the adult human pancreas are an under-explored resource for regenerative medicine. Using micro-manipulation and three-dimensional colony assays we identify cells within the adult human exocrine pancreas that resemble progenitor cells. Exocrine tissues were dissociated into single cells and plated into a colony assay containing methylcellulose and 5% Matrigel. A subpopulation of ductal cells formed colonies containing differentiated ductal, acinar, and endocrine lineage cells, and expanded up to 300-fold with a ROCK inhibitor. When transplanted into diabetic mice, colonies pre-treated with a NOTCH inhibitor gave rise to insulin-expressing cells. Both colonies and primary human ducts contained cells that simultaneously express progenitor transcription factors SOX9, NKX6.1, and PDX1. In addition, in silico analysis identified progenitor-like cells within ductal clusters in a single-cell RNA sequencing dataset. Therefore, progenitor-like cells capable of self-renewal and tri-lineage differentiation either pre-exist in the adult human exocrine pancreas, or readily adapt in culture.


Asunto(s)
Diabetes Mellitus Experimental , Metilcelulosa , Humanos , Adulto , Ratones , Animales , Páncreas , Conductos Pancreáticos , Células Madre
9.
Nat Commun ; 14(1): 5325, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658085

RESUMEN

The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid ß-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide de Fase Crónica , Leucemia Mieloide , MicroARNs , Animales , Humanos , Ratones , Crisis Blástica , Células Madre
10.
Biochemistry ; 51(20): 4117-25, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22217337

RESUMEN

As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated release of retinal from a short-wavelength-sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t(1/2)) of release of retinal from VCOP was 7.1 s, 250-fold faster than that of rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t(1/2) decreasing from 23 to 4 s with the pH decreasing from 4.1 to 8, respectively. However, the Arrhenius activation energy (E(a)) for VCOP derived from kinetic measurements between 4 and 20 °C was 17.4 kcal/mol, similar to the value of 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D(2)O) effect in VCOP, but this effect was smaller than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOP(D108A)) produced a pigment with an unprotonated chromophore (λ(max) = 360 nm) and dramatically slowed (t(1/2) ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D and D108A) was designed to move the counterion one α-helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (λ(max) = 420 nm). Moreover, the VCOP(S85D/D108A) mutant had retinal release kinetics (t(1/2) = 7 s) and an E(a) (18 kcal/mol) similar to those of the native pigment exhibiting no pH dependence. By contrast, the single mutant VCOP(S85D) had an ~3-fold decreased retinal release rate compared to that of the native pigment. Photoactivated VCOP(D108A) had kinetics comparable to those of a rhodopsin counterion mutant, Rho(E113Q), both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from inherent differences in the rate of Schiff base hydrolysis but rather from differences in the properties of noncovalent binding of the retinal chromophore to the protein.


Asunto(s)
Células Fotorreceptoras de Vertebrados/fisiología , Pigmentos Retinianos/fisiología , Retinaldehído/fisiología , Humanos , Concentración de Iones de Hidrógeno , Pigmentos Retinianos/química , Retinaldehído/química , Rodopsina/química , Bases de Schiff/química , Espectrofotometría Ultravioleta
11.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326597

RESUMEN

It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.

12.
Biochemistry ; 50(32): 6763-73, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21688771

RESUMEN

The role of the extracellular loop region of a short-wavelength sensitive pigment, Xenopus violet cone opsin, is investigated via computational modeling, mutagenesis, and spectroscopy. The computational models predict a complex H-bonding network that stabilizes and connects the EC2-EC3 loop and the N-terminus. Mutations that are predicted to disrupt the H-bonding network are shown to produce visual pigments that do not stably bind chromophore and exhibit properties of a misfolded protein. The potential role of a disulfide bond between two conserved Cys residues, Cys(105) in TM3 and Cys(182) in EC2, is necessary for proper folding and trafficking in VCOP. Lastly, certain residues in the EC2 loop are predicted to stabilize the formation of two antiparallel ß-strands joined by a hairpin turn, which interact with the chromophore via H-bonding or van der Waals interactions. Mutations of conserved residues result in a decrease in the level of chromophore binding. These results demonstrate that the extracellular loops are crucial for the formation of this cone visual pigment. Moreover, there are significant differences in the structure and function of this region in VCOP compared to that in rhodopsin.


Asunto(s)
Secuencia Conservada , Pigmentos Retinianos/química , Secuencia de Aminoácidos , Disulfuros/química , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pigmentos Retinianos/genética , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
13.
J Am Chem Soc ; 133(9): 2808-11, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21319741

RESUMEN

Assignment of the protonation state of the residue Glu-181 is important to our understanding of the primary event, activation processes and wavelength selection in rhodopsin. Despite extensive study, there is no general agreement on the protonation state of this residue in the literature. Electronic assignment is complicated by the location of Glu-181 near the nodal point in the electrostatic charge shift that accompanies excitation of the chromophore into the low-lying, strongly allowed ππ* state. Thus, the charge on this residue is effectively hidden from electronic spectroscopy. This situation is resolved in bathorhodopsin, because photoisomerization of the chromophore places Glu-181 well within the region of negative charge shift following excitation. We demonstrate that Glu-181 is negatively charged in bathorhodopsin on the basis of the shift in the batho absorption maxima at 10 K [λ(max) band (native) = 544 ± 2 nm, λ(max) band (E181Q) = 556 ± 3 nm] and the decrease in the λ(max) band oscillator strength (0.069 ± 0.004) of E181Q relative to that of the native protein. Because the primary event in rhodopsin does not include a proton translocation or disruption of the hydrogen-bonding network within the binding pocket, we may conclude that the Glu-181 residue in rhodopsin is also charged.


Asunto(s)
Ácido Glutámico/química , Rodopsina/química , Animales , Bovinos , Modelos Moleculares , Fotoquímica , Electricidad Estática
14.
Commun Biol ; 4(1): 663, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079066

RESUMEN

The reciprocal interactions between pathogens and hosts are complicated and profound. A comprehensive understanding of these interactions is essential for developing effective therapies against infectious diseases. Interferon responses induced upon virus infection are critical for establishing host antiviral innate immunity. Here, we provide a molecular mechanism wherein isoform switching of the host IKKε gene, an interferon-associated molecule, leads to alterations in IFN production during EV71 infection. We found that IKKε isoform 2 (IKKε v2) is upregulated while IKKε v1 is downregulated in EV71 infection. IKKε v2 interacts with IRF7 and promotes IRF7 activation through phosphorylation and translocation of IRF7 in the presence of ubiquitin, by which the expression of IFNß and ISGs is elicited and virus propagation is attenuated. We also identified that IKKε v2 is activated via K63-linked ubiquitination. Our results suggest that host cells induce IKKε isoform switching and result in IFN production against EV71 infection. This finding highlights a gene regulatory mechanism in pathogen-host interactions and provides a potential strategy for establishing host first-line defense against pathogens.


Asunto(s)
Enterovirus Humano A/inmunología , Enterovirus Humano A/patogenicidad , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Empalme Alternativo , Línea Celular , Genes de Cambio , Células HEK293 , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Quinasa I-kappa B/metabolismo , Inmunidad Innata/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Isoenzimas/genética , Isoenzimas/inmunología , Fosforilación , Ubiquitina/metabolismo
15.
J Hematol Oncol ; 14(1): 70, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902674

RESUMEN

BACKGROUND: BCL-2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60-70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML. METHODS: Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan-Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. RESULTS: We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. CONCLUSION: Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML.


Asunto(s)
2-Cloroadenosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Sulfonamidas/uso terapéutico , 2-Cloroadenosina/farmacología , 2-Cloroadenosina/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Humanos , Ratones , Ratones Endogámicos NOD , Fosforilación Oxidativa , Sulfonamidas/farmacología
16.
Cancer Discov ; 11(9): 2248-2265, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837065

RESUMEN

Chimeric antigen receptor (CAR) T cells mediate potent antigen-specific antitumor activity; however, their indirect effects on the endogenous immune system are not well characterized. Remarkably, we demonstrate that CAR T-cell treatment of mouse syngeneic glioblastoma (GBM) activates intratumoral myeloid cells and induces endogenous T-cell memory responses coupled with feed-forward propagation of CAR T-cell responses. IFNγ production by CAR T cells and IFNγ responsiveness of host immune cells are critical for tumor immune landscape remodeling to promote a more activated and less suppressive tumor microenvironment. The clinical relevance of these observations is supported by studies showing that human IL13Rα2-CAR T cells activate patient-derived endogenous T cells and monocytes/macrophages through IFNγ signaling and induce the generation of tumor-specific T-cell responses in a responding patient with GBM. These studies establish that CAR T-cell therapy has the potential to shape the tumor microenvironment, creating a context permissible for eliciting endogenous antitumor immunity. SIGNIFICANCE: Our findings highlight the critical role of IFNγ signaling for a productive CAR T-cell therapy in GBM. We establish that CAR T cells can activate resident myeloid populations and promote endogenous T-cell immunity, emphasizing the importance of host innate and adaptive immunity for CAR T-cell therapy of solid tumors.This article is highlighted in the In This Issue feature, p. 2113.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Células Mieloides/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Glioblastoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Pathogens ; 9(2)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075096

RESUMEN

Enterovirus 71 (EV71) has become an important public health problem in the Asia-Pacific region in the past decades. EV71 infection might cause neurological and psychiatric complications and even death. Although an EV71 vaccine has been currently approved, there is no effective therapy for treating EV71-infected patients. Virus infections have been reported to shape host T cell receptor (TCR) repertoire. Therefore, understanding of host TCR repertoire in EV71 infection could better the knowledge in viral pathogenesis and further benefit the anti-viral therapy development. In this study, we used a mouse-adapted EV71 (mEV71) model to observe changes of host TCR repertoire in an EV71-infected central nervous system. Neonate mice were infected with mEV71 and mouse brainstem TCRß repertoires were explored. Here, we reported that mEV71 infection impacted host brainstem TCRß repertoire, where mEV71 infection skewed TCRß diversity, changed VJ combination usages, and further expanded specific TCRß CDR3 clones. Using bioinformatics analysis and ligand-binding prediction, we speculated the expanded TCRß CDR3 clone harboring CASSLGANSDYTF sequence was capable of binding cleaved EV71 VP1 peptides in concert with major histocompatibility complex (MHC) molecules. We observed that mEV71 infection shaped host TCRß repertoire and presumably expanded VP1-specific TCRß CDR3 in mEV71-infected mouse brainstem that integrated EV71 pathogenesis in central nervous system.

18.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532105

RESUMEN

Depressed colorectal neoplasm exhibits high malignant potential and shows rapid invasiveness. We investigated the genomic profile of depressed neoplasms and clarified the survival outcome and treatment response of the cancers arising from them. We examined 20 depressed and 13 polypoid neoplasms by genome-wide copy number analysis. Subsequently, we validated the identified copy number alterations (CNAs) in an independent cohort of 37 depressed and 42 polypoid neoplasms. Finally, the CNAs were tested as biomarkers in 530 colorectal cancers (CRCs) to clarify the clinical outcome of depressed neoplasms. CNAs in MYC, CCNA1, and BIRC7 were significantly enriched in depressed neoplasms and designated as the D-marker panel. CRCs with a D-marker panel have significantly shorter progression-free survival compared with those without (p = 0.012), especially in stage I (p = 0.049), stages T1+2 (p = 0.027), and proximal cancers (p = 0.002). The positivity of the D-marker panel was an independent risk factor of cancer progression (hazard ratio (95% confidence interval) = 1.52 (1.09-2.11)). Furthermore, the proximal CRCs with D-marker panels had worse overall and progression-free survival when taking oxaliplatin as chemotherapy than those that did not. The D-marker panel may help to optimize treatment and surveillance in proximal CRC and develop a molecular test. However, the current result remains preliminary, and further validation in prospective trials is warranted in the future.

19.
Cancer Lett ; 371(2): 205-13, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26679051

RESUMEN

Sorafenib is the first and currently the only standard treatment for advanced hepatocellular carcinoma (HCC). We previously developed a sorafenib derivative SC-43, which exhibits much more enhanced anti-HCC activity than sorafenib and also promotes apoptosis in sorafenib-resistant HCC cells. Herein, a novel "sorafenib plus" combination therapy was developed by coupling sorafenib treatment with SC-43. Both sorafenib and SC-43 are proven Src homology region 2 domain containing phosphatase 1 (SHP-1) agonists. The combined actions of sorafenib and SC-43 enhanced SHP-1 activity, which was associated with diminished STAT3-related signals and stronger expression of apoptotic genes above that of either drug alone, culminating in increased cell death. Decreased p-STAT3 signaling and tumor size, as well as increased SHP-1 activity were observed in mice receiving the combination therapy in a subcutaneous HCC model. More reduced orthotopic HCC tumor size and prolonged survival were also observed in mice in the combination treatment arm compared to mice in either of the monotherapy arms. These results in the preclinical setting pave the way for further clinical studies to treat unresectable HCC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Activadores de Enzimas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Éteres Fenílicos/farmacología , Compuestos de Fenilurea/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Activación Enzimática , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Ratones Desnudos , Niacinamida/farmacología , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int J Radiat Oncol Biol Phys ; 95(2): 761-71, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26960749

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. METHODS AND MATERIALS: HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. RESULTS: Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. CONCLUSIONS: SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.


Asunto(s)
Bencimidazoles/farmacología , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/fisiología , Quinolonas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Factor de Transcripción STAT3/fisiología , Anciano , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda