RESUMEN
BACKGROUND: pTE15 is a ~ 15-kb narrow-host-range indigenous plasmid from Lactobacillus reuteri N16 that does not replicate in selected Bacillus spp., Staphylococcus spp., and other Lactobacillus spp. METHODS: Combined deletion analysis the minireplicon essential of pTE15 with replicon-probe vector pUE80 (-) to confirmed sufficient for replication and from the ssDNA intermediate detection, plasmid amplification tested by chloramphenicol treatment, and replication origin sequence analysis to delineated the novel theta-type replication of pTE15. RESULTS: Single-stranded intermediate of pTE15 DNA was not detected in L. reuteri, indicating that this plasmid does not replicate via a rolling circle mechanism. The replicon of pTE15 did not display the structural organization typical of rolling-circle plasmids, nor were they similar to known rolling-circle plasmids. We further provided evidence that this plasmid applied a new mode of theta-type replication mechanism: (1) the size of this plasmid was > 10-kb; (2) the minireplicon consisted of AT-rich (directed repeat, iteron) and DnaA sequences; (3) the minireplicon did not contain double-strand origin (DSO) and essential rep genes, and it also showed no single-strand origin (SSO) structure; (4) the intermediate single-stranded DNA products were not observed for pTE15 replication; (5) the minireplicon did not contain a typical essential replication protein, Rep, (6) its copy number was decreased by chloramphenicol treatment, and (7) genes in pTE15 replication region encoded truncated RepA (TRepA), RepB and RepC, which were replication-associated proteins, but they were not essential for pTE15 replication. CONCLUSIONS: Collectively, our results strongly suggested that the indigenous plasmid pTE15 of L. reuteri N16 belongs to a new class of theta replicons.
Asunto(s)
Limosilactobacillus reuteri , Limosilactobacillus reuteri/genética , Secuencia de Bases , Replicón , Plásmidos/genética , Origen de Réplica , Replicación del ADN , ADN de Cadena SimpleRESUMEN
We had previously developed an improved Ames module to directly determine the mutagenicity of gaseous formaldehyde (HCHO) and toluene without liquid extraction. This study further evaluated the suitability and sensitivity of this module on whole and real polluted air samples. For this, two common brands of stick incense (A and B) and cigarettes (A and B) were harvested, and various types of incense smoke (IS) and sidestream cigarette smoke (SCS) samples were generated by lighting 3, 6, 12, 24, 30, or 36 incense sticks, and by lighting 1, 2, or 3 cigarettes, respectively, in an acrylic box. CO2 , CO, total volatile organic compound (TVOC), PM1.0, and HCHO concentrations in the air samples were determined, and all air samples did not partially fit the requirements of the air quality standards. The smoke samples were then directly exposed to TA100 for 10, 20, 30, or 60 min in our exposure module. Exposure to IS (brand A) for 30 to 60 min and exposure to IS (brand B) for 60 min led to statistically (p < 0.05) weak (below the twofold rule) but dose-dependent mutagenic activities either with or without metabolic activation. Furthermore, a short-term exposure (10-60 min) to SCS (brands A and B) displayed statistically significant (p < 0.05) direct-acting, indirect-acting, time- and dose-dependent mutagenic activities. Furthermore, our data also support that the liver S9 enzyme could enhance the mutagenic activities in most IS and SCS samples. This study confirmed that the modified Ames module can be applied to directly detect the mutagenic activities of real polluted air samples.
Asunto(s)
Contaminación del Aire Interior , Fumar Cigarrillos , Mutágenos/toxicidad , Mutágenos/análisis , Pruebas de Mutagenicidad , Salmonella typhimurium/genéticaRESUMEN
Traditionally, direct-reading instruments have been used to directly determine the concentrations of indoor air pollutants that may exceed the regulation limits. However, these instruments cannot directly assess the potential health hazards of these pollutants to humans. In this study, we developed and improved a bacterial reverse mutation assay (Ames test) by using a direct gas exposure module to directly determine the mutagenicity of indoor air quality using five tester bacterial strains (TA98, TA100, TA102, TA1535, and TA1537). Thereafter, the module was used to evaluate the effects of exposure time, different concentrations of HCHO or toluene, and mutagenic activities. We found that TA100 was the most sensitive strain and was reverted by relatively lower concentrations of 0.035 ppm HCHO. Furthermore, 50 ppm of toluene exposures caused a significant increase in the number of revertant colonies of TA100 without S9 activation at the 1.5-8-h exposure time intervals. Our findings provide new evidence that gaseous HCHO exposure could display weak but direct, time-dependent, and dose-dependent mutagenic activities. The weak, direct-acting, indirect-acting, and time-dependent mutagen of 50 ppm toluene was also confirmed. Moreover, our improved Ames module and the exposure conditions provided in this study can be further applied to evaluate the mutagenicity of indoor air quality.
Asunto(s)
Contaminación del Aire Interior , Mutágenos/análisis , Tolueno/análisis , Contaminantes Atmosféricos , Escherichia coli , Formaldehído , Gases , Humanos , Pruebas de MutagenicidadRESUMEN
In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics.
RESUMEN
Compared with most mature cadmium-containing quantum dots (QDs), carbon nanodots (CNDs) are a new class of colloidal nanomaterials that exhibit unique photoluminescence (PL) properties while being nontoxic and easily manufactured using low-cost precursor materials. However, solid-state CNDs exhibit poor PL quantum yields (PL-QYs) and inefficient radiative transition, which significantly hinders their practical use in optoelectronic devices. To address this issue, plasmonic nanoantennas consisting of Au nanorods (Au-NRs) deposited on a flat Au film with inserted dielectric layers were used to enhance the spontaneous emission of solid-state CNDs with broad spectral linewidth. Using steady-state, time-resolved, and spatial-resolved PL measurements, we found that after coupling to plasmonic nanogaps (PNGs), the PL emission was significantly enhanced, accompanied by a PL lifetime shortening to the sub-nanosecond range (≈140â ps). According to the experimental data, the radiative transition is strongly accelerated and can thus overcome the metal loss, leading to a large PL enhancement. Our demonstration can pave the way to the design of eco-friendly nanoemitters with sub-nanosecond PL lifetime for promising applications in light-emitting devices.
RESUMEN
Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.
Asunto(s)
Bifidobacterium/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Lactoferrina/farmacología , Prebióticos , Probióticos , Animales , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium breve/efectos de los fármacos , Bifidobacterium breve/crecimiento & desarrollo , Bovinos , Medios de Cultivo/química , Lactobacillus/crecimiento & desarrollo , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus delbrueckii/efectos de los fármacos , Lactobacillus delbrueckii/crecimiento & desarrollo , Pediococcus pentosaceus/efectos de los fármacos , Pediococcus pentosaceus/crecimiento & desarrollo , TemperaturaRESUMEN
Recent studies have focused on foodborne or commensal bacteria as vehicles of antibiotic resistance. However, the antibiotic resistance of milk bacteria from healthy donors is still vague in Taiwan. For this purpose, human milk samples were obtained from randomly recruited 19 healthy women between 3 and 360 days post-partum. Antibiotic susceptibility profile of bacteria from milk samples was determined. About 20 bacterial species were isolated from milk samples including Staphylococcus (6 species), Streptococcus (4 species), Enterococcus (2 species), Lactobacillus (1 species), and bacteria belonging to other genera (7 species). Some opportunistic or potentially pathogenic bacteria including Kluyvera ascorbata, Klebsiella oxytoca, Klebsiella pneumoniae, Acinetobacter baumannii, Actinomyces bovis, and Staphylococcus aureus were also isolated. Intriguingly, Staphylococcus isolates (22 strains) were resistant to 28 of 8 antibiotics, while Streptococcus isolates (3 strains) were resistant to 37 of 9 antibiotics, and members of the genus Enterococcus (5 strains) were resistant to 38 of 9 antibiotics. Notably, Staphylococcus lugdunensis, S. aureus, Streptococcus parasanguinis, Streptococcus pneumonia, and Enterococcus faecalis were resistant to vancomycin, which is considered as the last-resort antibiotic. Therefore, this study shows that most bacterial strains in human milk demonstrate mild to strong antibiotic resistance. Whether commensal bacteria in milk could serve as vehicles of antibiotic resistance should be further investigated.
Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Farmacorresistencia Bacteriana , Leche Humana/microbiología , Bacterias/clasificación , Voluntarios Sanos , Pruebas de Sensibilidad Microbiana , Periodo Posparto , TaiwánRESUMEN
Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use.
Asunto(s)
Lactoferrina/administración & dosificación , Lactoferrina/fisiología , Probióticos/administración & dosificación , Aerobiosis , Anaerobiosis , Animales , Antibacterianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/fisiología , Bifidobacterium/efectos de los fármacos , Bifidobacterium/crecimiento & desarrollo , Bovinos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Pruebas de Sensibilidad MicrobianaRESUMEN
This study extensively explored the adsorption behavior of heavy metals (Pb+2, Ni+2, Cu+2, Zn+2, and Cd+2) onto microplastics (MPs). The particle sizes of MPs ranged from 0.149 to 0.25 mm. The microplastics were generated from commercial products manufactured from both conventional (polyethylene (PE) bottle, polystyrene (PS) spoon, and polyethylene terephthalate (PET) egg carton) and biodegradable (polylactic acid (PLA) spoon, and polylactic acid (PLA) egg carton) plastics. The study also considered the influence of solution pH on the adsorption capacity of heavy metals. Regarding the adsorption potential for Cu+2, the ranking was as follows: PLA-egg (1408 µg·g-1) > PLA-spoon (735 µg·g-1) > PE-bottle (315 µg·g-1) > PET-egg (283 µg·g-1) > PS-spoon (237 µg·g-1). PLA MPs showed the highest adsorption capacity due to the lower thermal stability and higher presence of surface oxygen functional groups. Moreover, the adsorption capacities of the five metals onto PLA-spoon and PLA-egg decreased in the following order: Pb (1785 µg·g-1) > Zn (1267 µg·g-1) > Cd (748 µg·g-1) > Cu (735 µg·g-1) > Ni (722 µg·g-1), and Pb (1520 µg·g-1) > Ni (1412 µg·g-1) > Cu (1408 µg·g-1) > Zn (1118 µg·g-1) > Cd (423 µg·g-1), respectively. The SEM-EDS, FTIR and XPS results demonstrated that surface oxygen-containing functional groups play an important role during the adsorption process. This study extended its analysis to quantify the metal content of the post-adsorption MPs, revealing uneven adsorption of heavy metals onto the MPs. This implies that the diversity of commercial plastic products may result in significant variations in their ability to adsorb heavy metals, underscoring the importance of effectively managing discarded commercial plastic products.
Asunto(s)
Metales Pesados , Microplásticos , Metales Pesados/análisis , Metales Pesados/química , Microplásticos/análisis , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Plásticos/análisis , Plásticos Biodegradables/química , Poliésteres/químicaRESUMEN
This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.
RESUMEN
Glucocorticoids (GCs) are often prescribed in clinics but many adverse effects are also attributed to GCs. It is important to determine the role of GCs in the development of those adverse effects. Here, we investigated the impact of GCs on trivalent chromium (Cr) distribution in animals. Cr has been proposed to be important for proper insulin sensitivity, and deficits may lead to disruption of metabolism. For comparison, the effect of a high-fat diet on Cr modulation was also evaluated. C57BL/6JNarl mice were fed regular or high-fat diets for 12 weeks and further grouped for treatment with prednisolone or saline. Cr levels in tissues were determined 12 h after the treatments. Interestingly, prednisolone treatment led to significantly reduced Cr levels in fat tissue in mice fed regular diets; compared to the high-fat diet alone, prednisolone plus the high-fat diet led to a further reduction in Cr levels in the liver, muscle, and fat. Notably, a single dose of prednisolone was linked with elevated Cr levels in the thigh bones of mice fed by either regular or high-fat diets. In conclusion, this report has provided evidence that prednisolone in combination with a high-fat diet effects modulation of Cr levels in selected tissues.
Asunto(s)
Cromo/metabolismo , Resistencia a la Insulina , Prednisolona/administración & dosificación , Tejido Adiposo/efectos de los fármacos , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , MusloRESUMEN
We have assessed new anodic coloring materials that can be used as ion storage layers in complementary energy storage electrochromic devices (ESECDs) to enhance their electrochromic storage performance. In our study, we fabricated counter electrodes (ion storage layers) using an IrO2-doping NiO (Ir:NiO) film through cathodic arc plasma (CAP) with varying surface charge capacities. We have also investigated the influence of a MoO3-doped WO3 (Mo:WO3) film using various Ar/O2 gas flow ratios (1/4, 1/5, and 1/6, respectively). The ESECDs used in the demonstration were 10 × 10 cm2 in size and achieved an optical transmittance modulation of the Ir:NiO ESECDs (glass/ITO/ Mo:WO3/gel polymer electrolytes/ Ir:NiO/ITO/glass), with ΔT = 53.3% (from Tbleaching (66.6%) to Tcoloration (13.1%)). The ESECDs had a quick coloration time of 3.58 s, a rapid bleaching time of 1.24 s, and a high cycling durability. Furthermore, it remained at a 45% transmittance modulation level even after 3000 cycles. New anodic materials can thereby provide an alternative to traditional active materials for bi-functional electrochromic batteries.
RESUMEN
Lactoferrin (LF) is a glycoprotein found in mammalian milk, and lactoferricin is a peptide derived from LF hydrolysate. Both LF and lactoferricin (LFcin) have diverse functions that could benefit mammals. Bovine LF (BLF) and BLFcin exhibit a wide range of antimicrobial activities, but most probiotic strains are relatively resistant to their antibacterial effects. BLF and BLF hydrolysate can promote the growth of specific probiotics depending on the culture conditions, the dose of BLF or BLF-related peptides, and the probiotic strains used. BLF supplementation has been shown to modulate several central molecular pathways or genes in Lacticaseibacillus rhamnosus GG under cold conditions, which may explain the prebiotic roles of BLF. LF alone or in combination with selected probiotics can help control bacterial infections or metabolic disorders, both in animal studies and in human clinical trials. Various LF-expressing probiotics, including those expressing BLF, human LF, or porcine LF, have been developed to facilitate the combination of LFs with specific probiotics. Supplementation with LF-expressing probiotics has positive effects in animal studies. Interestingly, inactivated LF-expressing probiotics significantly improved diet-induced nonalcoholic fatty liver disease (NAFLD) in a mouse model. This review highlights the accumulated evidence supporting the use of LF in combination with selected LF-resistant probiotics or LF-expressing probiotics in the field.
Asunto(s)
Prebióticos , Probióticos , Ratones , Animales , Bovinos , Humanos , Porcinos , Prebióticos/análisis , Lactoferrina/metabolismo , Antibacterianos/uso terapéutico , Probióticos/farmacología , Probióticos/uso terapéutico , Leche/química , Mamíferos/metabolismoRESUMEN
Hydrogels are conductive and stretchable, allowing for their use in flexible electronic devices, such as electronic skins, sensors, human motion monitoring, brain-computer interface, and so on. Herein, we synthesized the copolymers having various molar ratios of 3,4-ethylenedioxythiophene (EDOT) to thiophene (Th), which served as conductive additives. With doping engineering and incorporation with P(EDOT-co-Th) copolymers, hydrogels have presented excellent physical/chemical/electrical properties. It was found that the mechanical strength, adhesion ability, and conductivity of hydrogels were highly dependent on the molar ratio of EDOT to Th of the copolymers. The more the EDOT, the stronger the tensile strength and the greater the conductivity, but the lower the elongation break tends to be. By comprehensively evaluating the physical/chemical/electrical properties and cost of material use, the hydrogel incorporated with a 7:3 molar ratio P(EDOT-co-Th) copolymer was an optimal formulation for soft electronic devices.
RESUMEN
Urinary tract infections (UTIs) are highly prevalent bacterial infections that pose significant health risks. Specific probiotic strains have been recommended for UTI control and management of antibiotic resistance. Otherwise, para-probiotics, defined as inactivated probiotic cells, offer potential advantages by minimizing risks associated with live microorganisms. However, the effectiveness of heat-killed probiotic strains against UTIs remains uncertain. Additionally, lactoferrin (LF), an iron-binding glycoprotein, exhibits immunomodulatory, antimicrobial, and anti-inflammatory properties. Recently, we had developed recombinant LF-expression probiotics, which can display considerate antibacterial activities against select food-borne pathogens in vitro. Thus, the present study aimed to evaluate the antibacterial activities of heat-killed natural and recombinant LF-expressing probiotics against UTIs in vitro and in vivo. Firstly, using in vitro assays, we assessed the antibacterial activity of heat-killed natural and recombinant LF-expressing probiotics against uropathogenic Escherichia coli and Klebsiella pneumoniae. Among the tested probiotics, 10 heat-killed LF-expressing strains displayed superior antibacterial efficacy compared to 12 natural probiotics. Based on their potent in vitro activity, selected probiotics were formulated into three probiotic mixtures: viable probiotic mixture (LAB), heat-killed probiotic mixture (HK-LAB), and heat-killed LF-expressing probiotic mixture (HK-LAB/LF). To further evaluate the therapeutic potential of these probiotic mixtures in vivo, we established a murine model of UTIs by intraurethral administration of E. coli to 40 female C57BL/6JNarl mice on day 0. Subsequently, mice received oral gavage of placebo, LAB, HK-LAB, or HK-LAB/LF for 21 consecutive days (n = 8 per group). An additional control group (n = 8) received ampicillin treatment for 7 days. To assess protective effects against re-infection or UTI relapse, all mice were challenged with E. coli on day 22 and E. coli plus K. pneumoniae on day 25. Results from the murine UTI model demonstrated that placebo administration did not reduce bacteriuria throughout the experiment. Conversely, supplementation with ampicillin, HK-LAB/LF, HK-LAB, or LAB significantly (p < 0.05) reduced daily bacteriuria by 103 to 104-fold on days 1, 3, 5, and 14, respectively. Furthermore, all four therapeutic treatments improved the bacteriological cure rate (BCR) with varying levels of efficacy. For the 7-day treatment course, the BCR was 25% (placebo), 62.5% (ampicillin), 37.5% (LAB), 37.5% (HK-LAB), and 62.5% (HK-LAB/LF). For the 21-day treatment course, the BCR was 25% (placebo), 75% (ampicillin), 37.5% (LAB), 37.5% (HK-LAB), and 75% (HK-LAB/LF). Notably, HK-LAB and HK-LAB/LF demonstrated superior therapeutic efficacy compared to viable LAB in treating UTIs. Overall, regarding BCR, the three probiotic mixtures can provide benefits against UTI in mice, but ampicillin therapy remains the most efficient among the four treatments. Furthermore, there was no significant difference between pre- and post-challenge courses for the two instances of re-challenging uropathogens in all mice groups, as bacteriuria levels remained below 103 CFU/mL, implying that adaptive responses of mice may help reduce the risk of recurrent UTIs. In conclusion, our results provide new evidence that oral administration of heat-killed probiotic mixtures can confer significant therapeutic efficacy against UTIs in a murine model.
Asunto(s)
Bacteriuria , Infecciones por Escherichia coli , Probióticos , Infecciones Urinarias , Femenino , Animales , Ratones , Escherichia coli , Bacteriuria/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , Probióticos/uso terapéutico , AmpicilinaRESUMEN
Reabsorption-free luminescent solar concentrators (LSCs) are crucial ingredients for photovoltaic windows. Atomically precise metal nanoclusters (NCs) with large Stokes-shifted photoluminescence (PL) hold great promise for applications in LSCs. However, a fundamental understanding of the PL mechanism, particularly on the excited-state interaction and exciton kinetics, is still lacking. Herein, we studied the exciton-phonon coupling and singlet/triplet exciton dynamics for gold-doped silver NCs in a solid matrix. Following photoexcitation, the excitons can be self-trapped via strong exciton-phonon coupling. Subsequently, rapid thermal equilibration between the singlet and triplet states occurs due to the coexistence of small energy splitting and spin-orbit coupling. Finally, broadband delayed fluorescence with a large Stokes shift can be generated, namely, self-trapped, thermally equilibrated delayed fluorescence (ST-TEDF). Benefiting from superior ST-TEDF, we demonstrated efficient LSCs with minimized reabsorption.
RESUMEN
Electrochromic devices (ECDs) are a promising material for smart windows that are capable of transmittance variation. However, ECDs are still too expensive to achieve a wide market reach. Reducing fabrication cost remains a challenge. In this study, we inserted an IrO2 buffer layer on Ti-doped V2O5 (Ti:V2O5) as a counter electrode using various Ar/O2 gas flow ratios (1/2, 1/2.5, 1/3 and 1/3.5) in the fabrication process. The buffered-ECD resulted in a larger cyclic voltammetry (CV) area and the best surface average roughness (Ra = 3.91 nm) to promote electrochromic performance. It was fabricated using the low-cost, fast deposition process of vacuum cathodic arc plasma (CAP). This study investigates the influence of the IrO2 buffer/Ti:V2O5 electrode on ECD electrochemical and optical properties, in terms of color efficiency (CE) and cycle durability. The buffered ECD (glass/ITO/WO3/liquid electrolyte/IrO2 buffer/Ti:V2O5/ITO/glass) demonstrated excellent optical transmittance modulation; ∆T = 57% (from Tbleaching (67%) to Tcoloring (10%)) at 633 nm, which was higher than without the buffer (ITO/WO3/liquid electrolyte/Ti:V2O5/ITO) (∆T = 36%). In addition, by means of an IrO2 buffer, the ECD exhibited high coloration efficiency of 96.1 cm2/mC and good durability, which decayed by only 2% after 1000 cycles.
RESUMEN
We have recently developed probiotics that can express bovine, human, or porcine lactoferrin (LF), and the present study evaluated the effect of these probiotics in improving non-alcoholic fatty liver disease (NAFLD). Three kinds of probiotic supplements, including lactic acid bacteria (LAB), LAB/LF, and inactivated LAB/LF, were prepared. The LAB supplement was prepared from 10 viable LAB without recombinant LF-expression, the LAB/LF supplement was prepared from 10 viable probiotics expressing LF, and the inactivated LAB/LF supplement was prepared from 10 inactivated probiotics expressing LF. A model of obese/NAFLD mice induced by a high-fat diet was established, and the mice were randomly divided into four groups and fed with a placebo, LAB, LAB/LF, or inactivated LAB daily for four weeks via oral gavage. The body weight, food intake, organ weight, biochemistry, and hepatic histopathological alterations and severity scoring were measured. The results revealed that the obese mice fed with any one of the three probiotic mixtures prepared from recombinant probiotics for four weeks exhibited considerably improved hepatic steatosis. These findings confirmed the assumption that specific probiotic strains or LF supplements could help to control NAFLD, as suggested in previous reports. Our data also suggest that the probiotics and LFs in probiotic mixtures contribute differently to improving the efficacy against NAFLD, and the expressed LF content in probiotics may help to boost their efficacy in comparison with the original probiotic mixtures. Moreover, when these LF-expressing probiotics were further inactivated by sonication, they displayed better efficacies than the viable probiotics against NAFLD. This study has provided intriguing data supporting the potential of recombinant probiotics in improving hepatic steatosis.
RESUMEN
SARS-CoV-2 continues to evolve, causing waves of the pandemic. Up to May 2022, 10 million genome sequences have accumulated, which are classified into five major variants of concern. With the growing number of sequenced genomes, analysis of the big dataset has become increasingly challenging. Here we developed systematic approaches based on sets of correlated single nucleotide variations (SNVs) for comprehensive subtyping and pattern recognition of transmission dynamics. The approach outperformed single-SNV and spike-centric scans. Moreover, the derived subtypes elucidate the relationship of signature SNVs and transmission dynamics. We found that different subtypes of the same variant, including Delta and Omicron exhibited distinct temporal trajectories. For example, some Delta and Omicron subtypes did not spread rapidly, while others did. We identified sets of characteristic SNVs that appeared to enhance transmission or decrease efficacy of antibodies for some subtypes. We also identified a set of SNVs that appeared to suppress transmission or increase viral sensitivity to antibodies. For the Omicron variant, the dominant type in the world, we identified the subtypes with enhanced and suppressed transmission in an analysis of eight million genomes as of March 2022 and further confirmed the findings in a later analysis of ten million genomes as of May 2022. While the "enhancer" SNVs exhibited an enriched presence on the spike protein, the "suppressor" SNVs are mainly elsewhere. Disruption of the SNV correlation largely destroyed the enhancer-suppressor phenomena. These results suggest the importance of fine subtyping of variants, and point to potential complex interactions among SNVs.
RESUMEN
Carbon-based nanomaterials hold promise for eco-friendly alternatives to heavy-metal-containing quantum dots (QDs) in optoelectronic applications. Here, boric acid-functionalized graphene quantum dots (B-GQDs) were prepared using bottom-up molecular fusion based on nitrated pyrenes and boric acid. Such B-GQDs with crystalline graphitic structures and hydrogen-bonding functionalities would be suitable model systems for unraveling the photoluminescence (PL) mechanism, while serving as versatile building blocks for supramolecular self-assembly. Unlike conventional GQDs with multiple emissive states, the B-GQDs exhibited excitation-wavelength-independent, vibronic-coupled excitonic emission. Interestingly, their PL spectra can be tuned without largely sacrificing the quantum yield (QY) due to two-dimensional self-assembly. In addition, such B-GQDs in a polystyrene matrix possessed an ultrahigh QY (â¼90%) and large exciton binding energy (â¼300 meV). Benefiting from broadband absorption, ultrahigh QY, and long-wavelength emission, efficient laminated luminescent solar concentrators (100 × 100 × 6.3 mm3) were fabricated, yielding a high power conversion efficiency (1.4%).