Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mikrochim Acta ; 191(8): 468, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023836

RESUMEN

A highly sensitive surface-enhanced Raman scattering (SERS) biosensor has been developed for the detection of microRNA-21 (miR-21) using an isothermal enzyme-free cascade amplification method involving catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). The CHA reaction is triggered by the target miR-21, which causes hairpin DNA (C1 and C2) to self-assemble into CHA products. After AgNPs@Capture captures the resulting CHA product, the HCR reaction is started, forming long-stranded DNA on the surface of AgNPs. A strong SERS signal is generated due to the presence of a large amount of the Raman reporter methylene blue (MB) in the vicinity of the SERS "hot spot" on the surface of AgNPs. The monitoring of the SERS signal changes of MB allows for the highly sensitive and specific detection of miR-21. In optimal conditions, the biosensor exhibits a satisfactory linear range and a low detection limit for miR-21 of 42.3 fM. Additionally, this SERS biosensor shows outstanding selectivity and reproducibility. The application of this methodology to clinical blood samples allows for the differentiation of cancer patients from healthy controls. As a result, the CHA-HCR amplification strategy used in this SERS biosensor could be a useful tool for miRNA detection and early cancer screening.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Nanopartículas del Metal , MicroARNs , Hibridación de Ácido Nucleico , Espectrometría Raman , MicroARNs/sangre , MicroARNs/análisis , Técnicas Biosensibles/métodos , Humanos , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Plata/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Azul de Metileno/química , Catálisis
2.
Appl Spectrosc ; 78(5): 551-560, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38389424

RESUMEN

Aminophylline (AMP) is a bronchodilator. The therapeutic and toxic doses are very close. Therefore, therapeutic drug monitoring (TDM) of AMP is essential in clinical practice. Microgels were synthesized by free radical precipitation polymerization. Silver@poly(N-isopropyl acrylamide) (Ag@PNIPAM) hybrid microgels were obtained by loading silver (Ag) nanoparticles into the three-dimensional network of the microgels by in situ reduction. The microgel is a three-dimensional reticular structure with tunable pore size, large specific surface area, and good biocompatibility, which can be used as a sorbent for solid-phase extraction (SPE) of target molecules in complex matrices and as a surface-enhanced Raman spectroscopy (SERS) substrate. We optimized the conditions affecting SERS enhancement, such as silver nitrate (AgNO3) concentration and SPE time, according to the SERS strategy of Ag@PNIPAM hybrid microgels to achieve label-free TDM for trace AMP in human serum. The results showed good linearity between the logarithmic concentration of AMP and its SERS intensity in the range of 1-1.1 × 102 µg/mL, with a correlation coefficient (R2) of 0.9947 and a low detection limit of 0.61 µg/mL. The assay accuracy was demonstrated by spiking experiments, with recoveries ranging from 93.0 to 101.8%. The method is rapid, sensitive, reproducible, requires simple sample pretreatment, and has good potential for use in clinical treatment drug monitoring.


Asunto(s)
Aminofilina , Límite de Detección , Microesferas , Plata , Extracción en Fase Sólida , Espectrometría Raman , Aminofilina/sangre , Aminofilina/química , Humanos , Espectrometría Raman/métodos , Extracción en Fase Sólida/métodos , Plata/química , Hidrogeles/química , Nanopartículas del Metal/química , Resinas Acrílicas/química , Monitoreo de Drogas/métodos , Broncodilatadores/sangre , Broncodilatadores/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123924, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262293

RESUMEN

Determination of antiepileptic drugs and antipsychotics in human serum is significant in individualized drug administration and therapeutic drug monitoring (TDM). In this study, we developed a rapid label-free TDM method for the antiepileptic drug carbamazepine (CBZ) and the antipsychotic clozapine (CLO) in human serum. This detection strategy is based on the combination of surface-enhanced Raman scattering (SERS) and magnetic solid-phase extraction (MSPE). Initially, Fe3O4@SiO2@MIL-101(Fe) nanocomposites were synthesized by the layer-by-layer self-assembly method and characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, ultraviolet-visible, and Fourier transform infrared analyses. Subsequently, CBZ and CLO were detected in human serum using Fe3O4@SiO2@MIL-101(Fe) as the solid-phase extraction adsorbent and Ag nanoparticles as SERS substrates. The potential of the MSPE-SERS method for the label-free TDM of CBZ and CLO was then investigated. Fe3O4@SiO2@MIL-101(Fe) prevents magnetic particle aggregation and demonstrates rapid magnetic separation capability that simplifies the pretreatment process and reduces interference from complex matrices. Its large surface area can effectively enrich targets in complex matrices, thereby improving the SERS detection sensitivity. The linearity between CBZ and CLO was excellent over the concentration range of 0.1-100 µg/mL (calculated as the intensity of the SERS characteristic peaks of CBZ and CLO at 728 cm and 1054 cm-1, respectively), with correlation coefficients (R2) of 0.9987 and 0.9957, and detection limits of 0.072 and 0.12 µg/mL, respectively. The recoveries of CBZ with CLO ranged from 94.0 % to 105.0 %, and their relative standard deviations were <6.8 %. Compared to other assays, the developed MSPE-SERS method has the advantages of simple sample pretreatment, rapid detection, and good reproducibility, which provides a novel approach for the TDM of other drugs.


Asunto(s)
Antipsicóticos , Clozapina , Nanopartículas del Metal , Estructuras Metalorgánicas , Humanos , Espectrometría Raman , Dióxido de Silicio/química , Reproducibilidad de los Resultados , Monitoreo de Drogas , Plata , Carbamazepina , Fenómenos Magnéticos , Extracción en Fase Sólida/métodos , Límite de Detección , Cromatografía Líquida de Alta Presión/métodos
4.
Anal Chim Acta ; 1292: 342255, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309848

RESUMEN

BACKGROUND: ß-thalassemia is a blood disorder caused by autosomal mutations. Gene modulation therapy to activate the γ-globin gene to induce fetal hemoglobin (HbF) synthesis has become a new option for the treatment of ß-thalassemia. MicroRNA-210 (miR-210) contributes to studying the mechanism regulating γ-globin gene expression and is a potential biomarker for rapid ß-thalassemia screening. Traditional miRNA detection methods perform well but necessitate complex and time-consuming miRNA sample processing. Therefore, the development of a sensitive, accurate, and simple miRNA level monitoring method is essential. RESULTS: We have developed a non-enzymatic surface-enhanced Raman scattering (SERS) biosensor utilizing a signal cascade amplification of catalytic hairpin assembly reaction (CHA) and proximity hybridization-induced hybridization chain reaction (HCR). Au@Ag NPs were used as the SERS substrate, and methylene blue (MB)- modified DNA hairpins were used as the SERS tags. The SERS assay involved two stages: implementing the CHA-HCR cascade signal amplification strategy and conducting SERS measurements on the resulting product. The HCR was started by the products of target-triggered CHA, which formed lengthy nicked double-stranded DNA (dsDNA) on the Au@Ag NPs surface to which numerous SERS tags were attached, leading to a significant increase in the SERS signal intensity. High specificity and sensitivity for miR-210 detection was achieved by monitoring MB SERS intensity changes. The suggested SERS biosensor has a low detection limit of 5.13 fM and is capable of detecting miR-210 at concentration between 10 fM and 1.0 nM. SIGNIFICANCE: The biosensor can detect miR-210 levels in the erythrocytes of ß-thalassemia patients, enabling rapid screening for ß-thalassemia and suggesting a novel approach for investigating the regulation mechanism of miR-210 on γ-globin gene expression. In the meantime, this innovative technique has the potential to detect additional miRNAs and to become an important tool for the early diagnosis of diseases and for biomedical research.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Talasemia beta , Humanos , Talasemia beta/diagnóstico , Talasemia beta/genética , gamma-Globinas , ADN , Técnicas Biosensibles/métodos , Límite de Detección , Espectrometría Raman , Oro
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda