Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 5.812
Filtrar
Más filtros

Publication year range
1.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34143954

RESUMEN

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Asunto(s)
Bifidobacterium/fisiología , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/microbiología , Antibacterianos/farmacología , Biomarcadores/metabolismo , Lactancia Materna , Linfocitos T CD4-Positivos/inmunología , Polaridad Celular , Proliferación Celular , Citocinas/metabolismo , Heces/química , Heces/microbiología , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indoles/metabolismo , Recién Nacido , Inflamación/sangre , Inflamación/genética , Mucosa Intestinal/inmunología , Metaboloma , Leche Humana/química , Oligosacáridos/metabolismo , Células Th17/inmunología , Células Th2/inmunología , Agua
2.
Cell ; 178(1): 107-121.e18, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251911

RESUMEN

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Transcripción Genética/genética , Factor de Transcripción YY1/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Genoma Humano/genética , Células Hep G2 , Humanos , Células K562 , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas de Unión al ARN/genética , RNA-Seq , Transcriptoma , Factor de Transcripción YY1/genética
3.
Cell ; 174(5): 1277-1292.e14, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142345

RESUMEN

Epidemiological data suggest that early life exposures are key determinants of immune-mediated disease later in life. Young children are also particularly susceptible to infections, warranting more analyses of immune system development early in life. Such analyses mostly have been performed in mouse models or human cord blood samples, but these cannot account for the complex environmental exposures influencing human newborns after birth. Here, we performed longitudinal analyses in 100 newborn children, sampled up to 4 times during their first 3 months of life. From 100 µL of blood, we analyze the development of 58 immune cell populations by mass cytometry and 267 plasma proteins by immunoassays, uncovering drastic changes not predictable from cord blood measurements but following a stereotypic pattern. Preterm and term children differ at birth but converge onto a shared trajectory, seemingly driven by microbial interactions and hampered by early gut bacterial dysbiosis.


Asunto(s)
Sangre Fetal/inmunología , Sistema Inmunológico/fisiología , Recien Nacido Prematuro/inmunología , Inflamación , Linaje de la Célula , Disbiosis , Femenino , Microbioma Gastrointestinal , Humanos , Inmunoensayo , Recién Nacido , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Padres , Fenotipo , Nacimiento Prematuro/inmunología , Transcriptoma
4.
Mol Cell ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39151423

RESUMEN

The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.

5.
Nature ; 629(8013): 784-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720075

RESUMEN

Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO3) have demonstrated the vast capabilities of materials with a high Pockels coefficient1,2. They enable linear and high-speed modulators operating at complementary metal-oxide-semiconductor voltage levels3 to be used in applications including data-centre communications4, high-performance computing and photonic accelerators for AI5. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size. The high cost results from the lack of existing high-volume applications in other domains of the sort that accelerated the adoption of silicon-on-insulator (SOI) photonics, which was driven by vast investment in microelectronics. Here we report low-loss PICs made of lithium tantalate (LiTaO3), a material that has already been adopted commercially for 5G radiofrequency filters6 and therefore enables scalable manufacturing at low cost, and it has equal, and in some cases superior, properties to LiNbO3. We show that LiTaO3 can be etched to create low-loss (5.6 dB m-1) PICs using a deep ultraviolet (DUV) stepper-based manufacturing process7. We demonstrate a LiTaO3 Mach-Zehnder modulator (MZM) with a half-wave voltage-length product of 1.9 V cm and an electro-optic bandwidth of up to 40 GHz. In comparison with LiNbO3, LiTaO3 exhibits a much lower birefringence, enabling high-density circuits and broadband operation over all telecommunication bands. Moreover, the platform supports the generation of soliton microcombs. Our work paves the way for the scalable manufacture of low-cost and large-volume next-generation electro-optical PICs.

6.
Nature ; 630(8016): 340-345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778106

RESUMEN

Two-dimensional (2D) semiconductors have shown great potential for monolithic three-dimensional (M3D) integration due to their dangling-bonds-free surface and the ability to integrate to various substrates without the conventional constraint of lattice matching1-10. However, with atomically thin body thickness, 2D semiconductors are not compatible with various high-energy processes in microelectronics11-13, where the M3D integration of multiple 2D circuit tiers is challenging. Here we report an alternative low-temperature M3D integration approach by van der Waals (vdW) lamination of entire prefabricated circuit tiers, where the processing temperature is controlled to 120 °C. By further repeating the vdW lamination process tier by tier, an M3D integrated system is achieved with 10 circuit tiers in the vertical direction, overcoming previous thermal budget limitations. Detailed electrical characterization demonstrates the bottom 2D transistor is not impacted after repetitively laminating vdW circuit tiers on top. Furthermore, by vertically connecting devices within different tiers through vdW inter-tier vias, various logic and heterogeneous structures are realized with desired system functions. Our demonstration provides a low-temperature route towards fabricating M3D circuits with increased numbers of tiers.

7.
Genes Dev ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008138

RESUMEN

Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.

8.
Nature ; 613(7944): 474-478, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653568

RESUMEN

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

9.
Nature ; 618(7964): 287-293, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286650

RESUMEN

All-solid-state batteries with a Li anode and ceramic electrolyte have the potential to deliver a step change in performance compared with today's Li-ion batteries1,2. However, Li dendrites (filaments) form on charging at practical rates and penetrate the ceramic electrolyte, leading to short circuit and cell failure3,4. Previous models of dendrite penetration have generally focused on a single process for dendrite initiation and propagation, with Li driving the crack at its tip5-9. Here we show that initiation and propagation are separate processes. Initiation arises from Li deposition into subsurface pores, by means of microcracks that connect the pores to the surface. Once filled, further charging builds pressure in the pores owing to the slow extrusion of Li (viscoplastic flow) back to the surface, leading to cracking. By contrast, dendrite propagation occurs by wedge opening, with Li driving the dry crack from the rear, not the tip. Whereas initiation is determined by the local (microscopic) fracture strength at the grain boundaries, the pore size, pore population density and current density, propagation depends on the (macroscopic) fracture toughness of the ceramic, the length of the Li dendrite (filament) that partially occupies the dry crack, current density, stack pressure and the charge capacity accessed during each cycle. Lower stack pressures suppress propagation, markedly extending the number of cycles before short circuit in cells in which dendrites have initiated.

10.
Nature ; 609(7929): 954-958, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171378

RESUMEN

Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.


Asunto(s)
Fósiles , Maxilares , Vertebrados , Animales , China , Peces/anatomía & histología , Peces/clasificación , Maxilares/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Vertebrados/anatomía & histología , Vertebrados/clasificación
11.
Immunity ; 48(4): 773-786.e5, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29625896

RESUMEN

The molecular mechanisms whereby CD8+ T cells become "exhausted" in the tumor microenvironment remain unclear. Programmed death ligand-1 (PD-L1) is upregulated on tumor cells and PD-1-PD-L1 blockade has significant efficacy in human tumors; however, most patients do not respond, suggesting additional mechanisms underlying T cell exhaustion. B7 superfamily member 1 (B7S1), also called B7-H4, B7x, or VTCN1, negatively regulates T cell activation. Here we show increased B7S1 expression on myeloid cells from human hepatocellular carcinoma correlated with CD8+ T cell dysfunction. B7S1 inhibition suppressed development of murine tumors. Putative B7S1 receptor was co-expressed with PD-1 but not T cell immunoglobulin and mucin-domain containing-3 (Tim-3) at an activated state of early tumor-infiltrating CD8+ T cells, and B7S1 promoted T cell exhaustion, possibly through Eomes overexpression. Combinatorial blockade of B7S1 and PD-1 synergistically enhanced anti-tumor immune responses. Collectively, B7S1 initiates dysfunction of tumor-infiltrating CD8+ T cells and may be targeted for cancer immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células Mieloides/inmunología , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo , Animales , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-Set/genética
12.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008679

RESUMEN

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Asunto(s)
Caveolina 1 , Movimiento Celular , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Macrófagos/metabolismo , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Transporte Biológico , Cicatrización de Heridas/fisiología , Orgánulos/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(13): e2316912121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502698

RESUMEN

Multi-principal element alloys (MPEAs) exhibit outstanding strength attributed to the complex dislocation dynamics as compared to conventional alloys. Here, we develop an atomic-lattice-distortion-dependent discrete dislocation dynamics framework consisted of random field theory and phenomenological dislocation model to investigate the fundamental deformation mechanism underlying massive dislocation motions in body-centered cubic MPEA. Amazingly, the turbulence of dislocation speed is identified in light of strong heterogeneous lattice strain field caused by short-range ordering. Importantly, the vortex from dislocation flow turbulence not only acts as an effective source to initiate dislocation multiplication but also induces the strong local pinning trap to block dislocation movement, thus breaking the strength-ductility trade-off.

14.
EMBO J ; 41(22): e111038, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36215698

RESUMEN

Impaired clearance of beta-amyloid (Aß) is a primary cause of sporadic Alzheimer's disease (AD). Aß clearance in the periphery contributes to reducing brain Aß levels and preventing Alzheimer's disease pathogenesis. We show here that erythropoietin (EPO) increases phagocytic activity, levels of Aß-degrading enzymes, and Aß clearance in peripheral macrophages via PPARγ. Erythropoietin is also shown to suppress Aß-induced inflammatory responses. Deletion of EPO receptor in peripheral macrophages leads to increased peripheral and brain Aß levels and exacerbates Alzheimer's-associated brain pathologies and behavioral deficits in AD-model mice. Moreover, erythropoietin signaling is impaired in peripheral macrophages of old AD-model mice. Exogenous erythropoietin normalizes impaired EPO signaling and dysregulated functions of peripheral macrophages in old AD-model mice, promotes systemic Aß clearance, and alleviates disease progression. Erythropoietin treatment may represent a potential therapeutic approach for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Eritropoyetina , Animales , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Encéfalo/metabolismo , Macrófagos/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
15.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37142767

RESUMEN

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Asunto(s)
Ácido Glutámico , Transmisión Sináptica , Ratones , Animales , Ácido Glutámico/metabolismo , Cinética , Neuronas/fisiología , Sinapsis/fisiología
16.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38864340

RESUMEN

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.


Asunto(s)
Descubrimiento de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Sitios de Unión
17.
Chem Rev ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189449

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.

18.
Proc Natl Acad Sci U S A ; 120(40): e2302484120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37769254

RESUMEN

Two behavioral motivations coexist in transgressors following an interpersonal transgression-approaching and compensating the victim and avoiding the victim. Little is known about how these motivations arise, compete, and drive transgressors' decisions. The present study adopted a social interaction task to manipulate participants' (i.e., the transgressor) responsibility for another's (i.e., the victim) monetary loss and measure the participants' tradeoff between compensating the victim and avoiding face-to-face interactions with the victim. Following each transgression, participants used a computer mouse to choose between two options differing in the amount of compensation to the victim and the probability of face-to-face contact with the victim. Results showed that as participants' responsibility increased, 1) the decision weights on contact avoidance relative to compensation increased, and 2) the onset of the contact-avoidance attribute was expedited and that of the compensation attribute was delayed. These results demonstrate how competing social motivations following transgression evolve and determine social decision-making and shed light on how social-affective state modulates the dynamics of decision-making in general.


Asunto(s)
Emociones , Motivación , Humanos , Conducta Social , Interacción Social , Relaciones Interpersonales
19.
Proc Natl Acad Sci U S A ; 120(31): e2220500120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487105

RESUMEN

Regulating the motion of nanoscale objects on a solid surface is vital for a broad range of technologies such as nanotechnology, biotechnology, and mechanotechnology. In spite of impressive advances achieved in the field, there is still a lack of a robust mechanism which can operate under a wide range of situations and in a controllable manner. Here, we report a mechanism capable of controllably driving directed motion of any nanoobjects (e.g., nanoparticles, biomolecules, etc.) in both solid and liquid forms. We show via molecular dynamics simulations that a nanoobject would move preferentially away from the fluctuating region of an underlying substrate, a phenomenon termed fluctuotaxis-for which the driving force originates from the difference in atomic fluctuations of the substrate behind and ahead of the object. In particular, we find that the driving force can depend quadratically on both the amplitude and frequency of the substrate and can thus be tuned flexibly. The proposed driving mechanism provides a robust and controllable way for nanoscale mass delivery and has potential in various applications including nanomotors, molecular machines, etc.

20.
Am J Hum Genet ; 109(12): 2185-2195, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356581

RESUMEN

By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p < 5.0 × 10-8 and a Bonferroni-corrected p < 4.6 × 10-6, respectively. Of them, 32 loci and 15 genes showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the significant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer risk variants. Pathways analyses including 221 putative risk genes identified multiple signaling pathways that may play a significant role in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics of this common malignancy.


Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Femenino , Humanos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética , Neoplasias de la Mama/genética , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda