Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Cell ; 170(6): 1164-1174.e6, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886384

RESUMEN

Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.


Asunto(s)
Alphapapillomavirus/genética , Alphapapillomavirus/aislamiento & purificación , Carcinoma/virología , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/virología , Adulto , Alphapapillomavirus/clasificación , Estudios de Casos y Controles , Femenino , Genoma Viral , Humanos , Persona de Mediana Edad , Proteínas E7 de Papillomavirus/genética , Polimorfismo de Nucleótido Simple , Adulto Joven
2.
Nucleic Acids Res ; 51(22): 12140-12149, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37904586

RESUMEN

Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.


Asunto(s)
Bacteriófagos , Metilación de ADN , Microbioma Gastrointestinal , Humanos , Bacteriófagos/fisiología , Bacterias/virología , Archaea/virología , Enzimas de Restricción-Modificación del ADN
3.
J Virol ; 97(2): e0187222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36715516

RESUMEN

The expression of human papillomavirus (HPV) oncoproteins perturbed multiple cellular events of the host cells, leading to the formation of cancer phenotypes. Our current and previous studies indicated that Aurora kinase A (AurA), a mitotic regulator that is often aberrantly expressed in human cancers, is preferentially bound to E6-encoded by cancer-causing HPV. AurA is believed to be important for the proliferation and survival of HPV-positive cells. Nonetheless, the interaction between AurA and E6, and the mechanism of how this association is involved in carcinogenesis, have not been elucidated clearly. Hence, we performed a series of biochemical assays to characterize the AurA-E6 association and complex formation. We found the C-terminus of E6, upstream of the PDZ binding motif of E6, is important to forming the AurA-E6 complex in the nucleus. We also showed that the expression level of E6 corresponded positively with AurA expression. Meanwhile, the functional consequences of the AurA-E6 association to AurA kinase function and host cellular events were also delineated. Intriguingly, we revealed that AurA-E6 association regulated the expression of cyclin E and phosphor-Histone H3, which are involved in G1/S and mitotic phases of the cell cycle, respectively. Depletion of AurA also reduced the invasive ability of HPV-positive cells. AurA inhibition may not be sufficient to reduce the oncogenic potential exerted by E6. Altogether, our study unleashed the mechanism of how HPVE6 deploy AurA to promote cancer phenotypes, particularly through dysregulation of cell cycle checkpoints and suggests that the AurA-E6 complex possesses a therapeutic value. IMPORTANCE We unveiled the mechanism of how HPV employs Aurora kinase A (AurA) of host cells to exert its oncogenic capability synergistically. We systematically characterized the mode of interaction between E6-encoded by cancer-causing HPV and AurA. Then, we delineated the consequences of AurA-E6 complex formation on AurA kinase function and changes to cellular events at molecular levels. Using a cell-based approach, we unleashed that disruption of AurA-E6 association can halt cancer phenotype exhibited by HPV-positive cancer cells. Our findings are vital for the designing of state-of-the-art therapies for HPV-associated cancers.


Asunto(s)
Aurora Quinasa A , Virus del Papiloma Humano , Neoplasias , Infecciones por Papillomavirus , Proteínas del Envoltorio Viral , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Carcinogénesis/patología , Virus del Papiloma Humano/genética , Virus del Papiloma Humano/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Proteínas del Envoltorio Viral/metabolismo , Regulación Viral de la Expresión Génica , Neoplasias/etiología , Neoplasias/fisiopatología , Neoplasias/virología
4.
PLoS Pathog ; 18(3): e1010444, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35333912

RESUMEN

Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.


Asunto(s)
Carcinogénesis , Proteínas Oncogénicas Virales , Papillomaviridae , Proteína p53 Supresora de Tumor , Animales , Carcinogénesis/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Fenotipo , Primates , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
J Eukaryot Microbiol ; 71(1): e13007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37886908

RESUMEN

Free-living litostomatean ciliates, prominent microeukaryote predators commonly encountered in freshwater and marine habitats, play vital roles in maintaining energy flow and nutrient cycles. Nevertheless, understanding their biodiversity and phylogenetic relationships remains challenging due to insufficient morphological information and molecular data. As a new contribution to this group, three haptorian ciliates, including two new species (Actinobolina bivacuolata sp. nov. and Papillorhabdos foissneri sp. nov.) and the insufficiently described type species, Actinobolina radians, were isolated from wetlands around Lake Weishan, China and investigated by a combination of living morphology, stained preparations, and 18S rRNA gene sequence data. An illustrated key of the valid species within the two genera is provided. In addition, we reveal the phylogenetic positions of these two genera for the first time. Although they differ in all key morphologic characters such as general appearance (ellipsoidal with numerous tentacles vs. cylindrical), extrusomes (stored in tentacles vs. anchored to pellicle), circumoral kinety (present vs. absent), composition of somatic kineties (kinetosome clusters vs. monokinetids), and number of dorsal brush rows (1 vs. 4), they both cluster in a fully supported clade in the phylogenetic tree, which indicates that the biodiversity and additional molecular markers of this group need further exploration.


Asunto(s)
Cilióforos , Filogenia , ARN Ribosómico 18S/genética , Genes de ARNr , China , Lagos
6.
Environ Toxicol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488682

RESUMEN

In the realm of glioma treatment, our groundbreaking research has uncovered the pivotal role of Integrin Beta 2 (ITGB2) in non-apoptotic cell death and its profound implications for immunotherapy efficacy. Gliomas, known for their aggressive and infiltrative nature, demand innovative therapeutic strategies for improved patient outcomes. Our study bridges a critical gap by examining the interplay between non-apoptotic cell death and immunotherapy response in gliomas. Through comprehensive analysis of ten diverse glioma datasets, we developed a unique death enrichment score and identified ITGB2 as a significant risk marker. This study demonstrates that ITGB2 can predict immune activity, mutation characteristics, and drug response in glioma patients. We reveal that ITGB2 not only mediates glioma proliferation and migration but also crucially influences immunotherapy responses by modulating the interaction between gliomas and macrophages by single-cell sequencing analysis (iTalk and ICELLNET). Employing a variety of molecular and cellular methodologies, including in vitro models, our findings highlight ITGB2 as a potent marker in glioma biology, particularly impacting macrophage migration and polarization. We present compelling evidence of ITGB2's dual role in regulating tumor cell behavior and shaping the immune landscape, thereby influencing therapeutic outcomes. The study underlines the potential of ITGB2-targeted strategies in enhancing the efficacy of immunotherapy and opens new avenues for personalized treatment approaches in glioma management. In conclusion, this research marks a significant stride in understanding glioma pathology and therapy, positioning ITGB2 as a key biomarker and a promising target in the quest for effective glioma treatments.

7.
Int J Cancer ; 152(9): 1903-1915, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752573

RESUMEN

The bidirectional association between primary esophageal squamous cell carcinoma (ESCC) and oral cavity squamous cell carcinoma (OSCC) suggests common risk factors and oncogenic molecular processes but it is unclear whether these two cancers display similar patterns of dysbiosis in their upper aerodigestive microbiota (UADM). We conducted a case-control study to characterize the microbial communities in esophageal lavage samples from 49 ESCC patients and oral rinse samples from 91 OSCC patients using 16S rRNA V3-V4 amplicon sequencing. Compared with their respective non-SCC controls from the same anatomical sites, 32 and 45 discriminative bacterial genera were detected in ESCC and OSCC patients, respectively. Interestingly, 20 of them were commonly enriched or depleted in both types of cancer, suggesting a convergent niche adaptation of upper aerodigestive SCC-associated bacteria that may play important roles in the pathogenesis of malignancies. Notably, Fusobacterium, Selenomonas, Peptoanaerobacter and Peptostreptococcus were enriched in both ESCC and OSCC, whereas Streptococcus and Granulicatelia were commonly depleted. We further identified Fusobacterium nucleatum as the most abundant species enriched in the upper aerodigestive SCC microenvironment, and the higher relative abundances of Selenomonas danae and Treponema maroon were positively correlated with smoking. In addition, predicted functional analysis revealed several depleted (eg, lipoic acid and pyruvate metabolism) and enriched (eg, RNA polymerase and nucleotide excision repair) pathways common to both cancers. Our findings reveal a convergent dysbiosis in the UADM between patients with ESCC and OSCC, suggesting a shared niche adaptation of host-microbiota interactions in the pathogenesis of upper aerodigestive tract malignancies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias de Cabeza y Cuello , Microbiota , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias Esofágicas/microbiología , Disbiosis/complicaciones , ARN Ribosómico 16S/genética , Estudios de Casos y Controles , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/microbiología , Bacterias/genética , Microbiota/genética , Microambiente Tumoral
8.
Cancer Cell Int ; 23(1): 220, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770914

RESUMEN

Myosin heavy chain 9 (MYH9) plays an important role in a number of diseases. Nevertheless, the function of MYH9 in glioma is unclear. The present research aimed to investigate the role of MYH9 in glioma and determine whether MYH9 is involved in the temozolomide chemoresistance of glioma cells. Our results showed that MYH9 increased the proliferation and temozolomide resistance of glioma cells. The mechanistic experiments showed that the binding of MYH9 to NAP1L1, a potential promoter of tumor proliferation, inhibited the ubiquitination and degradation of NAP1L1 by recruiting USP14. Upregulation of NAP1L1 increased its binding with c-Myc and activated c-Myc, which induced the expression of CCND1/CDK4, promoting glioma cell temozolomide resistance and proliferation. Additionally, we found that MYH9 upregulation was strongly related to patient survival and is therefore a negative factor for patients with glioma. Altogether, our results show that MYH9 plays a role in glioma progression by regulating NAP1L1 deubiquitination. Thus, targeting MYH9 is a potential therapeutic strategy for the clinical treatment of glioma in the future.

9.
BMC Cancer ; 22(1): 339, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351053

RESUMEN

BACKGROUND: Nucleosome assembly protein 1-like 1 (NAP1L1) is highly expressed in various types of cancer and plays an important role in carcinogenesis, but its specific role in tumor development and progression remains largely unknown. In this study, we suggest the potential of NAP1L1 as a prognostic biomarker and therapeutic target for the treatment of ovarian cancer (OC). METHODS: In our study, a tissue microarray (TMA) slide containing specimens from 149 patients with OC and 11 normal ovarian tissues underwent immunohistochemistry (IHC) to analyze the correlation between NAP1L1 expression and clinicopathological features. Loss-of- function experiments were performed by transfecting siRNA and following lentiviral gene transduction into SKOV3 and OVCAR3 cells. Cell proliferation and the cell cycle were assessed by the Cell Counting Kit-8, EDU assay, flow cytometry, colony formation assay, and Western blot analysis. In addition, co-immunoprecipitation (Co-IP) and immunofluorescence assays were performed to confirm the relationship between NAP1L1 and its potential targets in SKOV3/OVCAR3 cells. RESULTS: High expression of NAP1L1 was closely related to poor clinical outcomes in OC patients. After knocking down NAP1L1 by siRNA or shRNA, both SKOV3 and OVCAR3 cells showed inhibition of cell proliferation, blocking of the G1/S phase, and increased apoptosis in vitro. Mechanism analysis indicated that NAP1L1 interacted with hepatoma-derived growth factor (HDGF) and they were co-localized in the cytoplasm. Furthermore, HDGF can interact with jun proto-oncogene (C-JUN), an oncogenic transformation factor that induces the expression of cyclin D1 (CCND1). Overexpressed HDGF in NAP1L1 knockdown OC cells not only increased the expression of C-JUN and CCND1, but it also reversed the suppressive effects of si-NAP1L1 on cell proliferation. CONCLUSIONS: Our data demonstrated that NAP1L1 could act as a prognostic biomarker in OC and can interact with HDGF to mediate the proliferation of OC, and this process of triggered proliferation may contribute to the activation of HDGF/C-JUN signaling in OC cells.


Asunto(s)
Apoptosis , Proteína 1 de Ensamblaje de Nucleosomas , Neoplasias Ováricas , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Genes jun , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína 1 de Ensamblaje de Nucleosomas/genética , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Neoplasias Ováricas/patología
10.
Gut ; 70(2): 276-284, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32690600

RESUMEN

OBJECTIVE: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in faeces of patients with COVID-19, the activity and infectivity of the virus in the GI tract during disease course is largely unknown. We investigated temporal transcriptional activity of SARS-CoV-2 and its association with longitudinal faecal microbiome alterations in patients with COVID-19. DESIGN: We performed RNA shotgun metagenomics sequencing on serial faecal viral extractions from 15 hospitalised patients with COVID-19. Sequencing coverage of the SARS-CoV-2 genome was quantified. We assessed faecal microbiome composition and microbiome functionality in association with signatures of faecal SARS-CoV-2 infectivity. RESULTS: Seven (46.7%) of 15 patients with COVID-19 had stool positivity for SARS-CoV-2 by viral RNA metagenomic sequencing. Even in the absence of GI manifestations, all seven patients showed strikingly higher coverage (p=0.0261) and density (p=0.0094) of the 3' vs 5' end of SARS-CoV-2 genome in their faecal viral metagenome profile. Faecal viral metagenome of three patients continued to display active viral infection signature (higher 3' vs 5' end coverage) up to 6 days after clearance of SARS-CoV-2 from respiratory samples. Faecal samples with signature of high SARS-CoV-2 infectivity had higher abundances of bacterial species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, Morganella morganii, and higher functional capacity for nucleotide de novo biosynthesis, amino acid biosynthesis and glycolysis, whereas faecal samples with signature of low-to-none SARS-CoV-2 infectivity had higher abundances of short-chain fatty acid producing bacteria, Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium 1_1_57FAA. CONCLUSION: This pilot study provides evidence for active and prolonged 'quiescent' GI infection even in the absence of GI manifestations and after recovery from respiratory infection of SARS-CoV-2. Gut microbiota of patients with active SARS-CoV-2 GI infection was characterised by enrichment of opportunistic pathogens, loss of salutary bacteria and increased functional capacity for nucleotide and amino acid biosynthesis and carbohydrate metabolism.


Asunto(s)
COVID-19/complicaciones , COVID-19/microbiología , Heces/microbiología , Heces/virología , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , COVID-19/diagnóstico , Femenino , Microbioma Gastrointestinal , Hospitalización , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Adulto Joven
11.
Gastroenterology ; 159(3): 944-955.e8, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442562

RESUMEN

BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/microbiología , Disbiosis/virología , Heces/microbiología , Microbioma Gastrointestinal/genética , Neumonía Viral/microbiología , Adulto , Anciano , COVID-19 , Femenino , Tracto Gastrointestinal/microbiología , Hong Kong/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Proyectos Piloto , SARS-CoV-2
12.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996427

RESUMEN

Human papillomavirus (HPV) type 58 is the third most commonly detected HPV type in cervical cancer among Eastern Asians. Our previous international epidemiological studies revealed that HPV58 carrying an E7 natural variant, T20I/G63S (designated V1), was associated with a higher risk of cervical cancer. We recently showed that V1 possesses a greater ability to immortalize and transform primary cells, as well as degrading pRB more effectively, than the prototype and other common variants. In this study, we performed a series of phenotypic and molecular assays using physiologically relevant in vitro and in vivo models to compare the oncogenicity of V1 with that of the prototype and other common natural variants. Through activation of the AKT and K-Ras/extracellular signal-regulated kinase (ERK) signaling pathways, V1 consistently showed greater oncogenicity than the prototype and other variants, as demonstrated by increased cell proliferation, migration, and invasion, as well as induction of larger tumors in athymic nude mice. This study complements our previous epidemiological and molecular observations pinpointing the higher oncogenicity of V1 than that of the prototype and all other common variants. Since V1 is more commonly found in eastern Asia, our report provides insight into the design of HPV screening assays and selection of components for HPV vaccines in this region.IMPORTANCE Epidemiological studies have revealed that a wild-type variant of HPV58 carrying an E7 variation, T20I/G63S (V1), is associated with a higher risk of cervical cancer. We previously reported that this increased oncogenicity could be the result of the virus's greater ability to degrade pRB, thereby leading to an increased ability to grow in an anchorage-independent manner. In addition to this, this report further showed that this HPV variant induced activation of the AKT and K-Ras/ERK signaling pathways, thereby explaining its genuine oncogenicity in promoting cell proliferation, migration, invasion, and formation of tumors, all to a greater extent than the prototype HPV58 and other common variants.


Asunto(s)
Papillomaviridae/clasificación , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Animales , Pueblo Asiatico , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Variación Genética , Humanos , Ratones , Ratones Desnudos , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Vacunas contra Papillomavirus , Ratas , Neoplasias del Cuello Uterino/virología
13.
Theor Biol Med Model ; 18(1): 10, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750399

RESUMEN

BACKGROUND: The COVID-19 pandemic poses a serious threat to global health, and pathogenic mutations are a major challenge to disease control. We developed a statistical framework to explore the association between molecular-level mutation activity of SARS-CoV-2 and population-level disease transmissibility of COVID-19. METHODS: We estimated the instantaneous transmissibility of COVID-19 by using the time-varying reproduction number (Rt). The mutation activity in SARS-CoV-2 is quantified empirically depending on (i) the prevalence of emerged amino acid substitutions and (ii) the frequency of these substitutions in the whole sequence. Using the likelihood-based approach, a statistical framework is developed to examine the association between mutation activity and Rt. We adopted the COVID-19 surveillance data in California as an example for demonstration. RESULTS: We found a significant positive association between population-level COVID-19 transmissibility and the D614G substitution on the SARS-CoV-2 spike protein. We estimate that a per 0.01 increase in the prevalence of glycine (G) on codon 614 is positively associated with a 0.49% (95% CI: 0.39 to 0.59) increase in Rt, which explains 61% of the Rt variation after accounting for the control measures. We remark that the modeling framework can be extended to study other infectious pathogens. CONCLUSIONS: Our findings show a link between the molecular-level mutation activity of SARS-CoV-2 and population-level transmission of COVID-19 to provide further evidence for a positive association between the D614G substitution and Rt. Future studies exploring the mechanism between SARS-CoV-2 mutations and COVID-19 infectivity are warranted.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , Glicoproteína de la Espiga del Coronavirus/genética , California/epidemiología , Humanos , Funciones de Verosimilitud , Pandemias
14.
BMC Infect Dis ; 21(1): 1039, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620109

RESUMEN

BACKGROUND: The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological outcomes at population scale. METHODS: We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate transmission advantage associated with the mutation activities marked by single substitution empirically. Using likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting transmission advantage on a real-time basis. RESULTS: The modelling framework in this study links together the mutation activity at molecular scale and COVID-19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, on a real-time basis. CONCLUSIONS: We reported an evidence of transmission advantage associated with D614G substitution, and highlighted the real-time estimating potentials of modelling framework.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/virología , Humanos , Funciones de Verosimilitud , Mutación , Pandemias , SARS-CoV-2/genética
15.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502564

RESUMEN

Papillomaviruses (PVs) are a heterogeneous group of DNA viruses that can infect fish, birds, reptiles, and mammals. PVs infecting humans (HPVs) phylogenetically cluster into five genera (Alpha-, Beta-, Gamma-, Mu- and Nu-PV), with differences in tissue tropism and carcinogenicity. The evolutionary features associated with the divergence of Papillomaviridae are not well understood. Using a combination of k-mer distributions, genetic metrics, and phylogenetic algorithms, we sought to evaluate the characteristics and differences of Alpha-, Beta- and Gamma-PVs constituting the majority of HPV genomes. A total of 640 PVs including 442 HPV types, 27 non-human primate PV types, and 171 non-primate animal PV types were evaluated. Our analyses revealed the highest genetic diversity amongst Gamma-PVs compared to the Alpha and Beta PVs, suggesting reduced selective pressures on Gamma-PVs. Using a sequence alignment-free trimer (k = 3) phylogeny algorithm, we reconstructed a phylogeny that grouped most HPV types into a monophyletic clade that was further split into three branches similar to alignment-based classifications. Interestingly, a subset of low-risk Alpha HPVs (the species Alpha-2, 3, 4, and 14) split from other HPVs and were clustered with non-human primate PVs. Surprisingly, the trimer-constructed phylogeny grouped the Gamma-6 species types originally isolated from the cervicovaginal region with the main Alpha-HPV clade. These data indicate that characterization of papillomavirus heterogeneity via orthogonal approaches reveals novel insights into the biological understanding of HPV genomes.


Asunto(s)
ADN Viral/genética , Evolución Molecular , Variación Genética , Genoma Viral/genética , Papillomaviridae/genética , Algoritmos , Animales , Análisis por Conglomerados , Codón/genética , Islas de CpG/genética , Metilación de ADN , ADN Viral/análisis , Humanos , Papillomaviridae/clasificación , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Filogenia , Análisis de Secuencia de ADN/métodos
16.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208758

RESUMEN

The goal of this study was to identify human papillomavirus (HPV) type 52 genetic and epigenetic changes associated with high-grade cervical precancer and cancer. Patients were selected from the HPV Persistence and Progression (PaP) cohort, a cervical cancer screening program at Kaiser Permanente Northern California (KPNC). We performed a nested case-control study of 89 HPV52-positive women, including 50 cases with predominantly cervical intraepithelial neoplasia grade 3 (CIN3) and 39 controls without evidence of abnormalities. We conducted methylation analyses using Illumina sequencing and viral whole genome Sanger sequencing. Of the 24 CpG sites examined, increased methylation at CpG site 5615 in HPV52 L1 region was the most significantly associated with CIN3, with a difference in median methylation of 17.9% (odds ratio (OR) = 4.8, 95% confidence interval (CI) = 1.9-11.8) and an area under the curve of 0.73 (AUC; 95% CI = 0.62-0.83). Complete genomic sequencing of HPV52 isolates revealed associations between SNPs present in sublineage C2 and a higher risk of CIN3, with ORs ranging from 2.8 to 3.3. This study identified genetic and epigenetic HPV52 variants associated with high risk for cervical precancer, improving the potential for early diagnosis of cervical neoplasia caused by HPV52.


Asunto(s)
Alphapapillomavirus/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Variación Genética , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/complicaciones , Neoplasias del Cuello Uterino/etiología , Alphapapillomavirus/clasificación , Transformación Celular Viral , Islas de CpG , Metilación de ADN , Femenino , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Infecciones por Papillomavirus/virología , Filogenia , Neoplasias del Cuello Uterino/diagnóstico
17.
J Infect Dis ; 222(10): 1612-1619, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32738137

RESUMEN

BACKGROUND: Self-collected specimens have been advocated to avoid infectious exposure to healthcare workers. Self-induced sputum in those with a productive cough and saliva in those without a productive cough have been proposed, but sensitivity remains uncertain. METHODS: We performed a prospective study in 2 regional hospitals in Hong Kong. RESULTS: We prospectively examined 563 serial samples collected during the virus shedding periods of 50 patients: 150 deep throat saliva (DTS), 309 pooled-nasopharyngeal (NP) and throat swabs, and 104 sputum. Deep throat saliva had the lowest overall reverse-transcriptase polymerase chain reaction (RT-PCR)-positive rate (68.7% vs 89.4% [sputum] and 80.9% [pooled NP and throat swabs]) and the lowest viral ribonucleic acid (RNA) concentration (mean log copy/mL 3.54 vs 5.03 [sputum] and 4.63 [pooled NP and throat swabs]). Analyses with respect to time from symptom onset and severity also revealed similar results. Virus yields of DTS correlated with that of sputum (Pearson correlation index 0.76; 95% confidence interval, 0.62-0.86). We estimated that the overall false-negative rate of DTS could be as high as 31.3% and increased 2.7 times among patients without sputum. CONCLUSIONS: Deep throat saliva produced the lowest viral RNA concentration and RT-PCR-positive rate compared with conventional respiratory specimens in all phases of illness. Self-collected sputum should be the choice for patients with sputum.


Asunto(s)
Betacoronavirus/genética , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Nasofaringe/virología , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Saliva/virología , Esputo/virología , Adolescente , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/virología , Femenino , Hong Kong/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Estudios Prospectivos , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Manejo de Especímenes/métodos , Adulto Joven
18.
Gut ; 69(11): 1998-2007, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32051205

RESUMEN

OBJECTIVE: Fusobacteria are not common nor relatively abundant in non-colorectal cancer (CRC) populations, however, we identified multiple Fusobacterium taxa nearly absent in western and rural populations to be comparatively more prevalent and relatively abundant in southern Chinese populations. We investigated whether these represented known or novel lineages in the Fusobacterium genus, and assessed their genomes for features implicated in development of cancer. METHODS: Prevalence and relative abundances of fusobacterial species were calculated from 3157 CRC and non-CRC gut metagenomes representing 16 populations from various biogeographies. Microbial genomes were assembled and compared with existing reference genomes to assess novel fusobacterial diversity. Phylogenetic distribution of virulence genes implicated in CRC was investigated. RESULTS: Irrespective of CRC disease status, southern Chinese populations harboured increased prevalence (maximum 39% vs 7%) and relative abundances (average 0.4% vs 0.04% of gut community) of multiple recognised and novel fusobacterial taxa phylogenetically distinct from Fusobacterium nucleatum. Genomes assembled from southern Chinese gut metagenomes increased existing fusobacterial diversity by 14.3%. Homologues of the FadA adhesin linked to CRC were consistently detected in several monophyletic lineages sister to and inclusive of F. varium and F. ulcerans, but not F. mortiferum. We also detected increased prevalence and relative abundances of F. varium in CRC compared with non-CRC cohorts, which together with distribution of FadA homologues supports a possible association with gut disease. CONCLUSION: The proportion of fusobacteria in guts of southern Chinese populations are higher compared with several western and rural populations in line with the notion of environment/biogeography driving human gut microbiome composition. Several non-nucleatum taxa possess FadA homologues and were enriched in CRC cohorts; whether this imposes a risk in developing CRC and other gut diseases deserves further investigation.


Asunto(s)
Pueblo Asiatico , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Fusobacterium/aislamiento & purificación , Adulto , Anciano , China , Estudios de Cohortes , Neoplasias Colorrectales/epidemiología , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Persona de Mediana Edad , Filogenia
19.
Emerg Infect Dis ; 26(9)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32491982

RESUMEN

We detected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on disposable wooden chopsticks used by 5 consecutive asymptomatic and postsymptomatic patients admitted for isolation and care at our hospital. Although we did not assess virus viability, our findings may suggest potential for transmission through shared eating utensils.


Asunto(s)
Betacoronavirus/genética , Utensilios de Comida y Culinaria , Infecciones por Coronavirus/virología , Fómites/virología , Neumonía Viral/virología , ARN Viral/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/transmisión , Hong Kong , Humanos , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2 , Madera/virología
20.
Emerg Infect Dis ; 26(12): 3076-3078, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33089772

RESUMEN

In March 2020, mild signs and symptoms of coronavirus disease developed in a healthy 33-year-old man in Hong Kong. His first infection did not produce virus neutralizing antibodies. In August, he had asymptomatic reinfection, suggesting that persons without a robust neutralizing antibody response might be at risk for reinfection.


Asunto(s)
COVID-19/inmunología , Reinfección/diagnóstico , Formación de Anticuerpos/inmunología , Hong Kong , Humanos , Masculino , Pandemias , SARS-CoV-2 , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda