RESUMEN
Precise genome manipulation in specific cell types and subtypes in vivo is crucial for neurobiological research because of the cellular heterogeneity of the brain. Site-specific recombinase systems in the mouse, such as Cre-loxP, improve cell type-specific genome manipulation; however, undesirable expression of cell type-specific Cre can occur. This could be due to transient expression during early development, natural expression in more than one cell type, kinetics of recombinases, sensitivity of the Cre reporter, and disruption in cis-regulatory elements by transgene insertion. Moreover, cell subtypes cannot be distinguished in cell type-specific Cre mice. To address these issues, we applied an intersectional genetic approach in mouse using triple recombination systems (Cre-loxP, Flp-FRT and Dre-rox). As a proof of principle, we labelled heterogeneous cell subtypes and deleted target genes within given cell subtypes by labelling neuropeptide Y (NPY)-, calretinin (calbindin 2) (CR)- and cholecystokinin (CCK)-expressing GABAergic neurons in the brain followed by deletion of RNA-binding Fox-1 homolog 3 (Rbfox3) in our engineered mice. Together, our study applies an intersectional genetic approach in vivo to generate engineered mice serving dual purposes of simultaneous cell subtype-specific labelling and gene knockout.
Asunto(s)
Integrasas , Recombinasas , Ratones , Animales , Técnicas de Inactivación de Genes , Integrasas/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Transgenes , Encéfalo/metabolismo , Ratones TransgénicosRESUMEN
Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.
Asunto(s)
Emociones , Miedo , Neuronas , Receptor del Glutamato Metabotropico 5 , Somatostatina , Animales , Receptor del Glutamato Metabotropico 5/metabolismo , Somatostatina/metabolismo , Neuronas/metabolismo , Miedo/fisiología , Masculino , Emociones/fisiología , Femenino , Ratones , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ansiedad/metabolismo , Ansiedad/fisiopatologíaRESUMEN
Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.
Asunto(s)
Proteínas de Unión al ADN , Neuronas GABAérgicas , Proteínas del Tejido Nervioso , Neuropéptido Y , Convulsiones , Proteína 1 de Membrana Asociada a Vesículas , Animales , Bumetanida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Giro Dentado/metabolismo , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Eliminación de Gen , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
The significance of anterior cruciate ligament (ACL) remnants during reconstruction remains unclear. Co-culturing ACL remnant cells and bone marrow stromal cells (BMSCs) may reduce apoptosis and enhance hamstring tendon activity. This study investigated whether extracellular vesicles (EVs), which facilitate cell-cell interactions, act as the active components, improving graft maturation in this co-culture. The effects of EVs on cell viability, proliferation, migration and gene expression in the rabbit ACL remnant cells and BMSCs were assessed using control (BMSC-only culture), co-culture (ACL remnant cells and BMSCs, CM) and co-culture without EVs (CM ∆ EVs) media. EVs were isolated from control (BMSC-EV) and co-culture (CM-EV) media and characterized. CM significantly enhanced the proliferation, migration and expression of transforming growth factor (TGF-ß)-, vascular endothelial growth factor (VEGF)-, collagen synthesis- and tenogenesis-related genes. However, CM-induced effects were reversed by the CM ∆ EVs treatment. CM-EV treatment exhibited higher potential to enhance proliferation, migration and gene expression in the ACL remnant cells and BMSCs than BMSC-EV and non-EV treatments. In conclusion, EVs, secreted under the coexistence of ACL remnant cells and BMSCs, primarily increase the cell viability, proliferation, migration and gene expression of collagen synthesis-, TGF-ß-, VEGF- and tenogenesis-related genes in both cell types.
Asunto(s)
Ligamento Cruzado Anterior , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Vesículas Extracelulares , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Conejos , Ligamento Cruzado Anterior/citología , Ligamento Cruzado Anterior/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Células Cultivadas , Regulación de la Expresión Génica , Comunicación Celular , Factor de Crecimiento Transformador beta/metabolismo , MasculinoRESUMEN
Reduced graphene oxide (rGO) has garnered extensive attention as electrodes, sensors, and membranes, necessitating the efficient reduction of graphene oxide (GO) for optimal performance. In this work, a swift reduction of GO that involves bringing GO foam in contact with semi-molten metals like tin (Sn) and lithium (Li) is presented. These findings reveal that the electrical resistance of GO foam is significantly diminished by its interaction with these metals, even in dry air. Taking inspiration from this technique, Sn foil is employed to encase the GO foam, followed by a calcination in 15 vol% H2 /Ar environment at 235 °C to fabricate the rGO, which demonstrates a remarkably lower electrical resistivity of 0.42 Ω cm when compared to the chemically reduced GO via hydrazine hydrate (650 Ω cm). The reduction mechanism entails the migration of Sn on GO and its subsequent reaction with oxygen functional groups. SnO/Sn(OH)2 formed from the reaction can be subsequently reversed through reduction by H2 to Sn. Utilizing this rGO as the host material for a sulfur cathode, a lithium-sulfur battery is constructed that displays a specific capacity of 1146 mAh g-1 and maintains a capacity retention of 68.4% after 300 cycles at a rate of 0.2 C.
RESUMEN
Ethylene response factors have been shown to be involved in the effects of plant developmental processes and to regulate stress tolerance. The aim of this study was to recognize the regulatory mechanisms of ethylene response factors on tobacco plant height. In this study, a gene-edited mutant (ERF10-KO) and wild type (WT) were utilized as experimental materials. Transcriptome and metabolome analyses were used to investigate the regulatory mechanism of NtERF10 gene editing on plant height in tobacco. Here, through the analysis of differentially expressed genes (DEGs), 2051 genes were upregulated and 1965 genes were downregulated. We characterized the different ERF10-KO and WT plant heights and identified key genes for photosynthesis, the plant hormone signal transduction pathway and the terpene biosynthesis pathway. NtERF10 was found to affect the growth and development of tobacco by regulating the expression levels of the PSAA, PSBA, GLY17 and GGP3 genes. Amino acid metabolism was analyzed by combining analyses of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). In addition, we found that members of the bHLH, NAC, MYB, and WRKY transcription factor families have vital roles in regulating plant height. This study not only provides important insights into the positive regulation of the ethylene response factor NtERF10 on plant height during plant growth and development but also provides new research ideas for tobacco molecular breeding.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Factores de Transcripción , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Etilenos/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , TranscriptomaRESUMEN
BACKGROUND: Normal cells express functional tumor suppressor WW domain-containing oxidoreductase (WWOX), designated WWOXf. UV irradiation induces WWOXf cells to undergo bubbling cell death (BCD) - an event due to the accumulation of nuclear nitric oxide (NO) gas that forcefully pushes the nuclear and cell membranes to form one or two bubbles at room temperature (22 °C) and below. In contrast, when WWOX-deficient or -dysfunctional (WWOXd) cells are exposed to UV and/or cold shock, the cells undergo nuclear pop-out explosion death (POD). We aimed to determine the morphological and biochemical changes in WWOXf cells during BCD versus apoptosis. METHODS: WWOXf and WWOXd cells were exposed to UV followed by measuring BCD or POD by time-lapse microscopy and/or time-lapse holographic microscopy at 4, 22, or 37 °C to visualize morphological changes. Live cell stains were used to measure the kinetics of nitric oxide (NO) production and Ca2+ influx. Extent of cell death was measured by uptake of propidium iodide and by internucleosomal DNA fragmentation using agarose gel electrophoresis. RESULTS: WWOXf cells were exposed to UV and then cold shock, or cold shock and then UV, and cultured at 4, 10, and 22 °C, respectively. Initially, UV induced calcium influx and NO production, which led to nuclear bubbling and final death. Cold shock pretreatment completely suppressed UV-mediated bubbling at 37 °C, so the UV/cold shock-treated cells underwent apoptosis. Without cold shock, UV only induced bubbling at all temperatures, whereas the efficiency of bubbling at 37 °C was reduced by greater than 50%. Morphologically, the WWOXf cell height or thickness was significantly increased during cell division or apoptosis, but the event did not occur in BCD. In comparison, when WWOXd cancer cells received UV or UV/cold shock, these cells underwent NO-independent POD. UV/cold shock effectively downregulated the expression of many proteins such as the housekeeping α-tubulin (> 70%) and ß-actin (< 50%), and cortactin (> 70%) in WWOXf COS7 cells. UV/cold shock induced relocation of α-tubulin to the nucleus and nuclear bubbles in damaged cells. UV induced co-translocation of the WWOX/TRAF2 complex to the nuclei, in which the prosurvival TRAF2 blocked the proapoptotic WWOX via its zinc finger domain. Without WWOX, TRAF2 did not relocate to the nuclei. Cold shock caused the dissociation of the WWOX/TRAF2 complex in the nucleus needed for BCD. In contrast, the formation of the WWOX/TRAF2 complex, plus p53, was strengthened at 37 °C required for apoptosis. CONCLUSIONS: The temperature-sensitive nuclear WWOX/TRAF2 complex acts as a molecular switch, whose dissociation favors BCD at low temperatures, and the association supports apoptosis at 37 °C in UV-treated WWOXf cells.
Asunto(s)
Núcleo Celular , Frío , Óxido Nítrico , Rayos Ultravioleta , Oxidorreductasa que Contiene Dominios WW , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Óxido Nítrico/metabolismo , Muerte Celular/efectos de la radiación , Apoptosis/efectos de la radiación , Calcio/metabolismo , Proteínas Supresoras de TumorRESUMEN
Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague-Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.
Asunto(s)
Carboxipeptidasa B2 , Sustancia Blanca , Humanos , Ratas , Animales , Fibrinólisis/fisiología , Carboxipeptidasa B2/genética , Carboxipeptidasa B2/metabolismo , Enfermedades Neuroinflamatorias , Monocitos/metabolismo , Proteómica , Sustancia Blanca/metabolismo , Ratas Sprague-Dawley , Trombina/metabolismo , Trombina/farmacologíaRESUMEN
Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.
Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Microglía , Sustancia Blanca , Animales , Microglía/metabolismo , Microglía/patología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Masculino , Ratas , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Análisis de la Célula Individual , Ratas Sprague-Dawley , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Inflamación/metabolismo , Inflamación/patología , Análisis de Secuencia de ARN/métodos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/genéticaRESUMEN
White matter lesions (WMLs) resulting from chronic cerebral hypoperfusion (CCH) are the leading cause of vascular dementia (VaD). This study aimed to investigate whether dipyridamole could alleviate WMLs by regulating the phenotype of disease-associated microglia (DAM) through equilibrative nucleoside transporter 2 (ENT2) and adenosine A2A receptor (Adora2a) and to clarify the underlying molecular mechanisms. CCH rat models were constructed to mimic VaD. Morris water maze and Luxol Fast Blue staining were employed to assess cognitive function and quantify the severity of WMLs, respectively. Immunofluorescent staining was performed to analyze the activation of glial cells and the phenotypic transformation of DAM. Additionally, levels of ENT2, proteins in the NF-κB and ERK1/2 pathways and inflammatory cytokines were detected. The results indicated that dipyridamole diminished the activation and proliferation of microglia and astrocytes, increased the expression of myelin basic protein and ameliorated WMLs and cognitive decline in CCH rats. Further study revealed that dipyridamole decreased the expression of ENT2 and inhibited the activation of ERK1/2 and NF-κB signaling pathways, which ultimately converted DAM to anti-inflammatory phenotype and suppressed the levels of TNF-α, IL-1ß, IL-6 in WMLs. However, Adora2a inhibitor (SCH58261) attenuated above effects. Our study demonstrates that dipyridamole facilitates the conversion of DAM to the anti-inflammatory phenotype through ENT2/Adora2a pathway and inhibits the activation of ERK1/2 and NF-κB signaling pathways, thereby alleviating neuroinflammation in WMLs. The current findings establish the basis for using dipyridamole to treat VaD.
Asunto(s)
Isquemia Encefálica , Enfermedades del Sistema Nervioso , Sustancia Blanca , Ratas , Animales , Microglía/metabolismo , FN-kappa B/metabolismo , Sustancia Blanca/metabolismo , Dipiridamol/farmacología , Dipiridamol/uso terapéutico , Dipiridamol/metabolismo , Isquemia Encefálica/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Antiinflamatorios/farmacología , Modelos Animales de EnfermedadRESUMEN
Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.
Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Braquiuros , Regulación de la Expresión Génica , Inmunidad Innata , Filogenia , Receptores de Laminina , Alineación de Secuencia , Animales , Braquiuros/genética , Braquiuros/inmunología , Receptores de Laminina/genética , Receptores de Laminina/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Secuencia de BasesRESUMEN
Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.
RESUMEN
During the PUREX process, the separation between U(VI) and Pu(IV) is achieved by reducing Pu(IV) to Pu(III), which is complicated and energy-consuming. To address this issue, we report here the first case of separation of U(VI) from Pu(IV) by o-phenanthroline diamide ligands under high acidity. Two new o-phenanthroline diamide ligands (1,10-phenanthroline-2,9-diyl)bis(indolin-1-ylmethanone) (L1) and (1,10-phenanthroline-2,9-diyl)bis((2-methylindolin-1-yl)methanone) (L2) were synthesized, which can effectively separate U(VI) from Pu(IV) even at 4 mol/L HNO3. The highest separation factor of U(VI) and Pu(IV) can reach over 1000, setting a new record for the separation of U(VI) from Pu(IV) under high acidity. Furthermore, extracted U(VI) can be easily recovered with water or dilute nitric acid, and the extraction performance remains stable even after 150 kGy gamma irradiation, which provides solid experimental support for potential engineering applications. The results of UV-vis titration and single-crystal X-ray diffraction measurements show that the 1:1 complex formed by L1 with U(VI) is more stable than all of the previously reported phenanthroline ligands, which reasonably reveals that the ligand L1 designed in this work has excellent affinity for U(VI). The findings of this work promise to contribute to the facilitation of the PUREX process by avoiding the use of reducing agents. It also provides new clues for designing ligands to achieve efficient separation between U(VI) and Pu(IV) at high acidity.
RESUMEN
The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.
Asunto(s)
Antineoplásicos , Proliferación Celular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Neoplasias de la Próstata , Quinolinas , Masculino , Animales , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Quinolinas/farmacología , Quinolinas/química , Quinolinas/uso terapéutico , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Agonismo Inverso de Drogas , Ratones , Ratones Desnudos , Descubrimiento de Drogas , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB CRESUMEN
Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15â¯mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16â¯S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Metanfetamina , Receptores sigma , Receptor Sigma-1 , Animales , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Metanfetamina/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Receptores sigma/metabolismoRESUMEN
PURPOSE: Carotid artery web (CaW) is a rare focal fibromuscular dysplasia that can lead to embolic strokes with large vessel occlusion. This condition can be effectively treated with endovascular thrombectomy (EVT). Our study aims to assess the prevalence of CaW among patients with acute ischemic stroke (AIS) who underwent EVT and to compare the clinical characteristics of CaW with other carotid artery pathologies. METHODS: We enrolled consecutive patients with AIS who underwent EVT at a single medical center and two regional teaching hospitals in Taiwan from September 2014 to December 2021. We compared CaW with carotid dissection (CaD) and carotid large artery atherosclerosis (CaLAA) in terms of patient demographics and thrombus histological findings. RESULTS: Of the 576 AIS patients who underwent EVT, four (mean age: 50 years) were diagnosed with CaW, resulting in a prevalence of 0.69%. Among these four patients, three experienced successful reperfusion after EVT and achieved functional independence (defined as a modified Rankin Scale score ≤2) three months post-stroke. Importantly, none of the CaW patients suffered a recurrent stroke within one year. Patients with CaW were younger than those with CaD or CaLAA, and exhibited fewer vascular risk factors. Additionally, CaW was associated with distal occlusion sites. The thrombus composition in CaW patients was similar to that in CaD patients. CONCLUSIONS: In conclusion, CaW is a rare finding among Asian patients with carotid artery disease who undergo for AIS. It is more prevalent in younger patients with a limited number of vascular risk factors.
RESUMEN
Melanoma is rare in Taiwan. Asian melanoma is distinct from Western melanoma because acral and mucosal melanoma accounts for the majority of melanoma cases, leading to distinct tumor behaviors and genetic profiling. With consideration of the clinical guidelines in Western countries, Taiwanese experts developed a local clinical practice consensus guideline. This consensus includes diagnosis, staging, and surgical and systemic treatment, based only on clinical evidence, local epidemiology, and available resources evaluated by experts in Taiwan. This consensus emphasizes the importance of surgical management, particularly for sentinel lymph node biopsies. In addition, molecular testing for BRAF is mandatory for patients before systemic treatment. Furthermore, immunotherapy and targeted therapy are prioritized for systemic treatment. This consensus aimed to assist clinicians in Taiwan in diagnosing and treating patients according to available evidence.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico , Melanoma/terapia , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/genética , Taiwán , Inmunoterapia , ConsensoRESUMEN
Traditional object counting systems use object detection methods to count objects. However, when objects are small, crowded, and dense, object detection may fail, leading to inaccuracies in counting. To address this issue, we propose a crowded object counting system based on density map estimation. While most density map estimation models employ encoder-decoder or multi-branch approaches to generate feature maps at different scales for obtaining an accurate density map, improving the accuracy of crowded object counting remains a challenge. In this paper, we propose a novel model that can generate more accurate density maps, utilizing the context-aware network as the primary structure and integrating the self-attention mechanism. There are three main contributions in this paper. Firstly, the self-attention mechanism is employed to improve the accuracy of density map estimation. Secondly, the missing vehicle labels in the TRANCOS database are relabeled, ensuring that the ground truth data are more complete than the original TRANCOS database, thus enabling the proposed novel model to have higher crowded object counting accuracy. Thirdly, the parameters of the self-attention mechanism are analyzed to obtain the optimum parameter combination. The experimental results demonstrate that the accuracy of crowded object counting can reach 85.9%, 90.0%, 83.4%, and 92.6% for the TRANCOS, relabeled TRANCOS, ShanghaiTech Part A, and Part B datasets, respectively. Furthermore, the ablation study for the context-aware network with self-attention mechanism analyzes the optimum parameter combination.
RESUMEN
Background: Minimally invasive plate osteosynthesis (MIPO) for clavicular shaft fracture yields favorable functional outcomes and results in less surgery-related soft tissue injury than other techniques. Anterior chest and shoulder skin numbness, a common complication after open reduction and plate fixation, is related to injury to the supraclavicular nerves. We propose MIPO combined with a mini-open approach without fluoroscopy for nerve preservation to minimize the risk of postoperative numbness compared with traditional open plating without nerve preservation. Methods: A total of 59 patients were retrospectively identified, with a follow-up period of 6 months. Thirty-two patients underwent MIPO with mini-open and nerve preservation technique (MIPO group), and 27 patients underwent traditional open plating without nerve preservation (open group). Constant-Murley shoulder outcome score, operation time, wound length, skin numbness, and number of implant removals were compared between the groups. Results: The MIPO group had significantly lower rates of anterior chest and shoulder skin numbness than the open group (MIPO: 12.5% vs. open: 55.6%; p < 0.001). Operation time was significantly longer in the MIPO group than in the open group (MIPO: 109.38 ± 18.83 vs. open: 81.48 ± 18.85; p < 0.001). Wound length was significantly shorter in the MIPO group than in the open group (MIPO: 4.73 ± 0.79 vs. open: 9.76 ± 1.64; p < 0.001). Both groups had similarly excellent Constant-Murley shoulder scores. There were significantly fewer implant removals in the MIPO group than in the open group (MIPO: 6.3% vs. open: 25.9%; p = 0.036). Neither group experienced any infection, implant failure, or nonunion. Conclusions: Our technique combining MIPO with the mini-open approach and supraclavicular nerve preservation yields a lower incidence of skin numbness than traditional open plating without nerve preservation.
Asunto(s)
Placas Óseas , Clavícula , Fijación Interna de Fracturas , Fracturas Óseas , Hipoestesia , Procedimientos Quirúrgicos Mínimamente Invasivos , Complicaciones Posoperatorias , Humanos , Clavícula/lesiones , Clavícula/cirugía , Masculino , Femenino , Adulto , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/efectos adversos , Hipoestesia/prevención & control , Hipoestesia/etiología , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Estudios Retrospectivos , Persona de Mediana Edad , Fracturas Óseas/cirugía , Complicaciones Posoperatorias/prevención & control , Resultado del TratamientoRESUMEN
Lithium-sulfur (Li-S) battery has been considered as a strong contender for commercial aerospace battery, but the commercialization requires Ah-level pouch cells with both efficient discharge at high rates and ultra-high energy density. In this paper, the application of lithium-sulfur batteries for powering drones by using the cathode of highly dispersed sulfur nanoparticles with well-controlled particle sizes have been realized. The sulfur nanoparticles are prepared by a precipitation method in an eco-friendly and efficient way, and loaded on graphene oxide-cetyltrimethylammonium bromide by molecular grafting to realize a large-scale fabrication of sulfur-based cathodes with superior electrochemical performance. A button cell based on the cathode exhibits an excellent discharge capacity of 62.8 mAh cm-2 at a high sulfur loading of 60 mg cm-2 (i.e., 1046.7 mAh g-1 ). The assembled miniature pouch cell (PCmini) shows a discharge capacity of 130 mAh g-1 , while the formed Ah-level pouch cell (PCAh) achieves energy density of 307 Wh kg-1 at 0.3C and 92 Wh kg-1 at 4C. Especially, a four-axis propeller drone powered by the PC has successfully completed a long flight (>3 min) at high altitudes, demonstrating the practical applicability as aviation batteries.