RESUMEN
The widespread preexisting immunity against virus-like particles (VLPs) seriously limits the applications of VLPs as vaccine vectors. Enabling technology for exogenous antigen display should not only ensure the assembly ability of VLPs and site-specific modification, but also consider the effect of preexisting immunity on the behavior of VLPs in vivo. Here, combining genetic code expansion technique and synthetic biology strategy, a site-specific modification method for hepatitis B core (HBc) VLPs via incorporating azido-phenylalanine into the desired positions is described. Through modification position screening, it is found that HBc VLPs incorporated with azido-phenylalanine at the main immune region can effectively assemble and rapidly conjugate with the dibenzocycolctyne-modified tumor-associated antigens, mucin-1 (MUC1). The site-specific modification of HBc VLPs not only improves the immunogenicity of MUC1 antigens but also shields the immunogenicity of HBc VLPs themselves, thereby activating a strong and persistent anti-MUC1 immune response even in the presence of preexisting anti-HBc immunity, which results in the efficient tumor elimination in a lung metastatic mouse model. Together, these results demonstrate the site-specific modification strategy enabled HBc VLPs behave as a potent antitumor vaccine and this strategy to manipulate immunogenicity of VLPs may be suitable for other VLP-based vaccine vectors.
Asunto(s)
Virus de la Hepatitis B , Vacunas de Partículas Similares a Virus , Animales , Ratones , Virus de la Hepatitis B/genética , Vacunas de Partículas Similares a Virus/genética , Antígenos de Neoplasias , Ratones Endogámicos BALB CRESUMEN
Through inducing death receptor (DR) clustering to activate downstream signaling, tumor necrosis factor related apoptosis inducing ligand (TRAIL) trimers trigger apoptosis of tumor cells. However, the poor agonistic activity of current TRAIL-based therapeutics limits their antitumor efficiency. The nanoscale spatial organization of TRAIL trimers at different interligand distances is still challenging, which is essential for the understanding of interaction pattern between TRAIL and DR. In this study, a flat rectangular DNA origami is employed as display scaffold, and an "engraving-printing" strategy is developed to rapidly decorate three TRAIL monomers onto its surface to form DNA-TRAIL3 trimer (DNA origami with surface decoration of three TRAIL monomers). With the spatial addressability of DNA origami, the interligand distances are precisely controlled from 15 to 60 nm. Through comparing the receptor affinity, agonistic activity and cytotoxicity of these DNA-TRAIL3 trimers, it is found that ≈40 nm is the critical interligand distance of DNA-TRAIL3 trimers to induce death receptor clustering and the resulting apoptosis.Finally, a hypothetical "active unit" model is proposed for the DR5 clustering induced by DNA-TRAIL3 trimers.
Asunto(s)
Neoplasias , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Apoptosis , Factor de Necrosis Tumoral alfa , Línea Celular TumoralRESUMEN
Pancreatic cancer immunotherapy is becoming a promising strategy for improving the survival rate of postsurgical patients. However, the low response rate to immunotherapy suggests a low number of antigen-specific T cells and a high number of immunosuppressive tumor-associated macrophages in the pancreatic tumor microenvironment. Herein, we developed an in situ injectable thermosensitive chitosan hydrogel loaded with lipid-immune regulatory factor 5 (IRF5) mRNA/C-C chemokine ligand 5 (CCL5) siRNA (LPR) nanoparticle complexes (LPR@CHG) that reprogram the antitumoral immune niche. The LPR@CHG hydrogel upregulates IRF5 and downregulates CCL5 secretion, which contribute to a significant increase in M1 phenotype macrophages. Tumor growth is controlled by effective M1 phenotype macrophage that initiate T cell-mediated immune responses. Overall, the LPR@CHG hydrogel is expected to be a meaningful immunotherapy platform that can reshape the immunosuppressive tumor microenvironment and improve the efficacy of current pancreatic immunotherapies while minimizing systemic toxicity.
Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Hidrogeles , Inmunoterapia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Factores Inmunológicos , Factores Reguladores del Interferón , Neoplasias PancreáticasRESUMEN
Tumor antigens released from tumor cells after local photothermal therapy (PTT) can activate the tumor-specific immune responses, which are critical for eliminating the residual lesions and distant metastases. However, the limited recognition efficiency of released tumor antigens by the immune system and the immunosuppressive microenvironment lead to ineffective antitumor immunity. Here, an in situ multifunctional vaccine based on bacterial outer membrane vesicles (OMVs, 1-MT@OMV-Mal) is developed by surface conjunction of maleimide groups (Mal) and interior loading with inhibitor of indoleamine 2, 3-dioxygenase (IDO), 1-methyl-tryptophan (1-MT). 1-MT@OMV-Mal can bind to the released tumor antigens after PTT, and be efficiently recognized and taken up by dendritic cells. Furthermore, in situ injection of 1-MT@OMV-Mal simultaneously overcomes the immune inhibition of IDO on tumor-infiltrating effector T cells, leading to remarkable inhibition on both primary and distant tumors. Together, a promising in situ vaccine based on OMVs to facilitate immune-mediated tumor clearance after PTT through orchestrating antigen capture and immune modulation is presented.
Asunto(s)
Neoplasias , Vacunas , Antígenos de Neoplasias , Membrana Externa Bacteriana , Humanos , Inmunidad , Inmunoterapia , Neoplasias/terapia , Terapia Fototérmica , Microambiente TumoralRESUMEN
The limited efficacy of single-agent immune checkpoint inhibitors in treating tumors has prompted investigations on their combination partners. Here, a tumor-homing indoleamine 2,3-dioxygenase (IDO) nanoinhibitor is reported to selectively inhibit immunosuppressive IDO pathway in the tumor microenvironment. It is self-assembled from a modularly designed peptide-drug conjugate containing a hydrophilic targeting motif (arginyl-glycyl-aspartic acid; RGD), two protonatable histidines, and an ester bond-linked hydrophobic IDO inhibitor, which exhibits pH-responsive disassembly and esterase-catalyzed drug release. Markedly, it achieved potent and persistent inhibition of intratumoral IDO activity with a reduced systemic toxicity, which greatly enhanced the therapeutic efficacy of programmed cell death-ligand 1 blockade in vivo. Overall, this study provides a promising paradigm of combinatorial normalization immunotherapy by exploiting a targeted IDO nanoinhibitor to augment the antitumor immunity of checkpoint inhibitors.
Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Diseño de Fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Nanopartículas , Profármacos/farmacología , Humanos , Inmunoterapia , Oligopéptidos/química , Profármacos/farmacocinética , Microambiente TumoralRESUMEN
Within tumors, the coagulation-inducing protein tissue factor (TF), a major initiator of blood coagulation, has been shown to play a critical role in the hematogenous metastasis of tumors, due to its effects on tumor hypercoagulability and on the mediation of interactions between platelets and tumor cells. Targeting tumor-associated TF has therefore great therapeutic potential for antimetastasis therapy and preventing thrombotic complication in cancer patients. Herein, we reported a novel peptide-based nanoparticle that targets delivery and release of small interfering RNA (siRNA) into the tumor site to silence the expression of tumor-associated TF. We showed that suppression of TF expression in tumor cells blocks platelet adhesion surrounding tumor cells in vitro. The downregulation of TF expression in intravenously administered tumor cells (i.e., simulated circulating tumor cells [CTCs]) prevented platelet adhesion around CTCs and decreased CTCs survival in the lung. In a breast cancer mouse model, siRNA-containing nanoparticles efficiently attenuated TF expression in the tumor microenvironment and remarkably reduced the amount of lung metastases in both an experimental lung metastasis model and tumor-bearing mice. What's more, this strategy reversed the hypercoagulable state of the tumor bearing mice by decreasing the generation of thrombin-antithrombin complexes (TAT) and activated platelets, both of which are downstream products of TF. Our study describes a promising approach to combat metastasis and prevent cancer-associated thrombosis, which advances TF as a therapeutic target toward clinic applications.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Neoplasias Pulmonares , Nanopartículas , Proteínas de Neoplasias , Neoplasias Experimentales , ARN Interferente Pequeño , Trombofilia , Tromboplastina , Trombosis , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Trombofilia/genética , Trombofilia/metabolismo , Trombofilia/prevención & control , Tromboplastina/biosíntesis , Tromboplastina/genética , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología , Trombosis/prevención & controlRESUMEN
Combination therapeutic regimen is becoming a primary direction for current cancer immunotherapy to broad the antitumor response. Functional nanomaterials offer great potential for steady codelivery of various drugs, especially small molecules, therapeutic peptides, and nucleic acids, thereby realizing controllable drug release, increase of drug bioavailability, and reduction of adverse effects. Herein, a therapeutic peptide assembling nanoparticle that can sequentially respond to dual stimuli in the tumor extracellular matrix was designed for tumor-targeted delivery and on-demand release of a short d-peptide antagonist of programmed cell death-ligand 1 (DPPA-1) and an inhibitor of idoleamine 2,3-dioxygenase (NLG919). By concurrent blockade of immune checkpoints and tryptophan metabolism, the nanoformulation increased the level of tumor-infiltrated cytotoxic T cells and in turn effectively inhibited melanoma growth. To achieve this, an amphiphilic peptide, consisting of a functional 3-diethylaminopropyl isothiocyanate (DEAP) molecule, a peptide substrate of matrix metalloproteinase-2 (MMP-2), and DPPA-1, was synthesized and coassembled with NLG919. The nanostructure swelled when it encountered the weakly acidic tumor niche where DEAP molecules were protonated, and further collapsed due to the cleavage of the peptide substrate by MMP-2 that is highly expressed in tumor stroma. The localized release of DPPA-1 and NLG919 created an environment which favored the survival and activation of cytotoxic T lymphocytes, leading to the slowdown of melanoma growth and increase of overall survival. Together, this study offers new opportunities for dual-targeted cancer immunotherapy through functional peptide assembling nanoparticles with design features that are sequentially responsive to the multiple hallmarks of the tumor microenvironment.
Asunto(s)
Preparaciones de Acción Retardada/química , Imidazoles/administración & dosificación , Isoindoles/administración & dosificación , Melanoma/terapia , Nanopartículas/química , Péptidos/administración & dosificación , Animales , Antígeno B7-H1/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos , Imidazoles/uso terapéutico , Inmunoterapia , Isoindoles/uso terapéutico , Ratones , Ratones Desnudos , Péptidos/uso terapéutico , Microambiente Tumoral/efectos de los fármacosRESUMEN
Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1ß secretion. The elevated interleukin-1ß increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.
Asunto(s)
Neoplasias , Inmunidad Entrenada , Animales , Ratones , Interleucina-1beta , Vacunación , Neoplasias/prevención & control , Activación de Linfocitos , Antígenos de Neoplasias , BacteriasRESUMEN
Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.
Asunto(s)
Vacunas contra el Cáncer , Vesículas Extracelulares , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Inmunidad Entrenada , Macrófagos Asociados a TumoresRESUMEN
Drug conjugates are conjugates comprising a tumor-homing carrier tethered to a cytotoxic agent via a linker that are designed to deliver an ultra-toxic payload directly to the target cancer cells. This strategy has been successfully used to increase the therapeutic efficacy of cytotoxic agents and reduce their toxic side effects. Drug conjugates are being developed worldwide, with the potential to revolutionize current cancer treatment strategies. Antibody-drug conjugates (ADCs) have developed rapidly, and 14 of them have received market approval since the first approval event by the Food and Drug Administration in 2000. However, there are some limitations in the use of antibodies as carriers. Other classes of drug conjugates are emerging, such as targeted drugs conjugated with peptides (peptide-drug conjugates, PDCs) and polymers (polymer-drug conjugates, PolyDCs) with the remaining constructs similar to those of ADCs. These novel drug conjugates are gaining attention because they overcome the limitations of ADCs. This review summarizes the current state and advancements in knowledge regarding the design, constructs, and clinical efficacy of different drug conjugates.
Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Preparaciones Farmacéuticas , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de MedicamentosRESUMEN
In tumor nanovaccines, nanocarriers enhance the delivery of tumor antigens to antigen-presenting cells (APCs), thereby ensuring the robust activation of tumor antigen-specific effector T-cells to kill tumor cells. Through employment of their high immunogenicity and nanosize, we have developed a "Plug-and-Display" delivery platform on the basis of bacterial outer membrane vesicles (OMVs) for tumor nanovaccines (NanoVac), which can rapidly display different tumor antigens and efficiently eliminate lung metastases of melanoma. In this study, we first upgraded the NanoVac to increase their antigen display efficiency. However, we found that the presence of a subcutaneous xenograft seriously hampered the efficiency of NanoVac to eliminate lung metastases, with the subcutaneous xenograft mimicking the primary tumor burden in clinical practice. The primary tumor secreted significant amounts of granulocyte colony-stimulating factor (G-CSF) and altered the epigenetic features of granulocyte monocyte precursor cells (GMPs) in the bone marrow, thus disrupting systemic immunity, particularly the function of APCs, and ultimately resulting in NanoVac failure to affect metastases. These changes in the systemic immune macroenvironment were plastic, and debulking surgery of primary tumor resection reversed the dysfunction of APCs and failure of NanoVac. These results demonstrate that, in addition to the formulation design of the tumor nanovaccines themselves, the systemic immune macroenvironment incapacitated by tumor development is another key factor that cannot be ignored to affect the efficiency of tumor nanovaccines, and the combination of primary tumor resection with NanoVac is a promising radical treatment for widely metastatic tumors.
Asunto(s)
Procedimientos Quirúrgicos de Citorreducción , Neoplasias Pulmonares , Humanos , Células Presentadoras de Antígenos , Linfocitos T , Antígenos de NeoplasiasRESUMEN
Restoring sodium iodide symporter (NIS) expression and function remains a major challenge for radioiodine therapy in anaplastic thyroid cancer (ATC). For more efficient delivery of messenger RNA (mRNA) to manipulate protein expression, a lipid-peptide-mRNA (LPm) nanoparticle (NP) is developed. The LPm NP is prepared by using amphiphilic peptides to assemble a peptide core and which is then coated with cationic lipids. An amphiphilic chimeric peptide, consisting of nine arginine and hydrophobic segments (6 histidine, C18 or cholesterol), is synthesized for adsorption of mRNA encoding NIS in RNase-free conditions. In vitro studies show that LP(R9H6) m NP is most efficient at delivering mRNA and can increase NIS expression in ATC cells by more than 10-fold. After intratumoral injection of NIS mRNA formulated in optimized LPm NP, NIS expression in subcutaneous ATC tumor tissue increases significantly in nude mice, resulting in more iodine 131 (131 I) accumulation in the tumor, thereby significantly inhibiting tumor growth. Overall, this work designs three arginine-rich peptide nanoparticles, contributing to the choice of liposome cores for gene delivery. LPm NP can serve as a promising adjunctive therapy for patients with ATC by restoring iodine affinity and enhancing the therapeutic efficacy of radioactive iodine.
Asunto(s)
Yodo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Ratones , Línea Celular Tumoral , Radioisótopos de Yodo/uso terapéutico , Lípidos , Liposomas , Ratones Desnudos , Péptidos , ARN Mensajero , Carcinoma Anaplásico de Tiroides/terapia , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/genética , HumanosRESUMEN
Induced pluripotent stem cells (iPSCs) have wide applications in disease modeling, personalized medicine, and tissue engineering. The generation of iPSCs from somatic cells via transcriptional-factor- or chemical molecule-based approaches are time-consuming and inefficient. Here, a cell-reprogramming-inspired dynamically responsive hydrogel is fabricated via a synthetic-biology-based strategy. Human and mouse somatic cells (including senescent cells) are efficiently reprogrammed into iPSCs that exhibit key features of embryonic stem cells. The cell-reprogramming-responsive hydrogel possesses dynamic bioresponsiveness, and it faithfully senses metabolic remodeling and extracellular acidification during cell reprogramming, responding by changing its mechanical properties accordingly. Mechanistic study demonstrates that the autonomous change of the mechanical properties of the cell-reprogramming-responsive hydrogel elicits the formation of Yes-associated protein (YAP) biomolecular condensates with the appropriate timing during cell reprogramming, ensuring a faster and more efficient generation of iPSCs than conventional cell reprogramming approach. Taken together, this study reveals the robust induction of pluripotency by coordination of cell-reprogramming-inspired dynamically responsive hydrogel and phase-separated biomolecular condensates.
RESUMEN
Micro-nano biorobots based on bacteria have demonstrated great potential for tumor diagnosis and treatment. The bacterial gene expression and drug release should be spatiotemporally controlled to avoid drug release in healthy tissues and undesired toxicity. Herein, we describe an alternating magnetic field-manipulated tumor-homing bacteria developed by genetically modifying engineered Escherichia coli with Fe3O4@lipid nanocomposites. After accumulating in orthotopic colon tumors in female mice, the paramagnetic Fe3O4 nanoparticles enable the engineered bacteria to receive and convert magnetic signals into heat, thereby initiating expression of lysis proteins under the control of a heat-sensitive promoter. The engineered bacteria then lyse, releasing its anti-CD47 nanobody cargo, that is pre-expressed and within the bacteria. The robust immunogenicity of bacterial lysate cooperates with anti-CD47 nanobody to activate both innate and adaptive immune responses, generating robust antitumor effects against not only orthotopic colon tumors but also distal tumors in female mice. The magnetically engineered bacteria also enable the constant magnetic field-controlled motion for enhanced tumor targeting and increased therapeutic efficacy. Thus, the gene expression and drug release behavior of tumor-homing bacteria can be spatiotemporally manipulated in vivo by a magnetic field, achieving tumor-specific CD47 blockage and precision tumor immunotherapy.
Asunto(s)
Neoplasias del Colon , Nanopartículas , Neoplasias , Femenino , Animales , Ratones , Inmunoterapia , Neoplasias/patología , Fagocitosis , Neoplasias del Colon/terapia , BacteriasRESUMEN
The complex gastrointestinal environment and the intestinal epithelial barrier constrain the design and effectiveness of orally administered tumour vaccines. Here we show that outer membrane vesicles (OMVs) fused to a tumour antigen and produced in the intestine by ingested genetically engineered bacteria function as effective tumour vaccines in mice. We modified Escherichia coli to express, under the control of a promoter induced by the monosaccharide arabinose, a specific tumour antigen fused with the protein cytolysin A on the surface of OMVs released by the commensal bacteria. In mice, oral administration of arabinose and the genetically engineered E. coli led to the production of OMVs that crossed the intestinal epithelium into the lamina propria, where they stimulated dendritic cell maturation. In a mouse model of pulmonary metastatic melanoma and in mice bearing subcutaneous colon tumours, the antigen-bearing OMVs inhibited tumour growth and protected the animals against tumour re-challenge. The in situ production of OMVs by genetically modified commensal bacteria for the delivery of stimulatory molecules could be leveraged for the development of other oral vaccines and therapeutics.
Asunto(s)
Vacunas contra el Cáncer , Escherichia coli , Animales , Antígenos de Neoplasias/metabolismo , Arabinosa/metabolismo , Membrana Celular , Escherichia coli/genética , RatonesRESUMEN
The most immune cells infiltrating tumor microenvironment (TME), tumor-associated macrophages (TAMs) closely resemble immunosuppressive M2-polarized macrophages. Moreover, tumor cells exhibit high expression of CD47 "don't eat me" signal, which obstructs macrophage phagocytosis. The precise and efficient activation of TAMs is a promising approach to tumor immunotherapy; however, re-education of macrophages remains a challenge. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic nanovesicles that can robustly stimulate macrophages. Here, an OMV-based controllable two-way adaptor is reported, in which a CD47 nanobody (CD47nb) is fused onto OMV surface (OMV-CD47nb), with the outer surface coated with a polyethylene glycol (PEG) layer containing diselenide bonds (PEG/Se) to form PEG/Se@OMV-CD47nb. The PEG/Se layer modification not only mitigates the immunogenicity of OMV-CD47nb, thereby remarkedly increasing the dose that can be administered safely through intravenous injection, but also equips the formulation with radiation-triggered controlled release of OMV-CD47nb. Application of radiation to tumors in mice injected with the nanoformulation results in remodeling of TME. As two-way adaptors, OMV-CD47nb activates TAM phagocytosis of tumor cells via multiple pathways, including induction of M1 polarization and blockade of "don't eat me" signal. Moreover, this activation of TAMs results in the stimulation of T cell-mediated antitumor immunity through effective antigen presentation.
Asunto(s)
Membrana Externa Bacteriana , Antígeno CD47 , Animales , Línea Celular Tumoral , Preparaciones de Acción Retardada/metabolismo , Inmunoterapia , Macrófagos , Ratones , Fagocitosis , Polietilenglicoles/metabolismo , Microambiente TumoralRESUMEN
Therapeutic mRNA vaccination is an attractive approach to trigger antitumor immunity. However, the mRNA delivery technology for customized tumor vaccine is still limited. In this work, bacteria-derived outer membrane vesicles (OMVs) are employed as an mRNA delivery platform by genetically engineering with surface decoration of RNA binding protein, L7Ae, and lysosomal escape protein, listeriolysin O (OMV-LL). OMV-LL can rapidly adsorb box C/D sequence-labelled mRNA antigens through L7Ae binding (OMV-LL-mRNA) and deliver them into dendritic cells (DCs), following by the cross-presentation via listeriolysin O-mediated endosomal escape. OMV-LL-mRNA significantly inhibits melanoma progression and elicits 37.5% complete regression in a colon cancer model. OMV-LL-mRNA induces a long-term immune memory and protects the mice from tumor challenge after 60 days. In summary, this platform provides a delivery technology distinct from lipid nanoparticles (LNPs) for personalized mRNA tumor vaccination, and with a "Plug-and-Display" strategy that enables its versatile application in mRNA vaccines.
Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Animales , Bacterias , Vacunas contra el Cáncer/genética , Liposomas , Ratones , ARN MensajeroRESUMEN
Nanocarriers with intrinsic immune adjuvant properties can activate the innate immune system while delivering tumor antigen, thus efficiently facilitating antitumor adaptive immunity. Bacteria-derived outer membrane vesicles (OMVs) are an excellent candidate due to their abundance of pathogen associated molecular patterns. However, during the uptake of OMVs by dendritic cells (DCs), the interaction between lipopolysaccharide and toll-like receptor 4 induces rapid DC maturation and uptake blockage, a phenomenon we refer to as "maturation-induced uptake obstruction" (MUO). Herein we decorated OMV with the DC-targeting αDEC205 antibody (OMV-DEC), which endowed the nanovaccine with an uptake mechanism termed as "not restricted to maturation via antibody modifying" (Normandy), thereby overcoming the MUO phenomenon. We also proved the applicability of this nanovaccine in identifying the human tumor neoantigens through rapid antigen display. In summary, this engineered OMV represents a powerful nanocarrier for personalized cancer vaccines, and this antibody modification strategy provides a reference to remodel the DC uptake pattern in nanocarrier design.
RESUMEN
Due to their ability to elicit a potent immune reaction with low systemic toxicity, cancer vaccines represent a promising strategy for treating tumors. Considerable effort has been directed toward improving the in vivo efficacy of cancer vaccines, with direct lymph node (LN) targeting being the most promising approach. Here, a click-chemistry-based active LN accumulation system (ALAS) is developed by surface modification of lymphatic endothelial cells with an azide group, which provide targets for dibenzocyclooctyne (DBCO)-modified liposomes, to improve the delivery of encapsulated antigen and adjuvant to LNs. When loading with OVA257-264 peptide and poly(I:C), the formulation elicits an enhanced CD8+ T cell response in vivo, resulting in a much more efficient therapeutic effect and prolonged median survival of mice. Compared to treatment with DBCO-conjugated liposomes (DL)-Ag/Ad without the azide targeting, the percent survival of ALAS-vaccine-treated mice improves by 100% over 60 days. Altogether, the findings indicate that the novel ALAS approach is a powerful strategy to deliver vaccine components to LNs for enhanced antitumor immunity.
Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Animales , Células Endoteliales , RatonesRESUMEN
The effectiveness of cancer immunotherapy is impaired by the dysfunctional vasculature of tumors. Created hypoxia zones and limited delivery of cytotoxic immune cells help to have immune resistance in tumor tissue. Structural and functional normalization of abnormal tumor vasculature provide vessels for more perfusion efficiency and drug delivery that result in alleviating the hypoxia in the tumor site and increasing infiltration of antitumor T cells. Taking advantage of peptide amphiphiles, herein, a novel peptide amphiphile nanoparticle composed of an antiangiogenic peptide (FSEC) and an immune checkpoint blocking peptide (D PPA) is designed and characterized. FSEC peptide is known to be involved in vessel normalization of tumors in vivo. D PPA is an inhibitory peptide of the PD-1/PD-L1 immune checkpoint pathway. The peptide amphiphile nanoparticle sets out to test whether simultaneous modulation of tumor vasculature and immune systems in the tumor microenvironment has a synergistic effect on tumor suppression. Increased intratumoral infiltration of immune cells following vascular normalization, and simultaneously blocking the immune checkpoint function of PD-L1 reactivates effective immune responses to the tumors. In summary, the current study provides a new perspective on the regulation of tumor vessel normalization and immunotherapy based on functional peptide nanoparticles as nanomedicine for improved therapeutic purposes.