Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Insights Imaging ; 15(1): 114, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734997

RESUMEN

OBJECTIVES: Liver transient elastography (TE) has been endorsed by the WHO as the first-line diagnostic tool for liver diseases. Although unreliable and invalid results caused by intercostal space (ICS)-associated factors (including excessive subcutaneous fat and a narrow ICS relative to the transducer size) and operator inexperience are not uncommon, no standard guidelines for ideal probe placement are currently available. Herein, we conducted a prospective observational study to identify an ideal measurement site and respiratory condition for TE by characterizing anatomical and biomechanical properties of the ICSs using ultrasound B-mode and elasticity imaging. METHODS: Intercostal ultrasound was performed pointwise at four specific sites in 59 patients to simultaneously measure the width, stiffness, and skin‒liver capsule distance (SCD) of the ICSs over the liver, under end-inspiratory and end-expiratory conditions. Intersections between the 8th ICS and anterior axillary line, the 7th ICS and anterior axillary line, the 8th ICS and mid-axillary line, and the 7th ICS and mid-axillary line were defined as Sites 1 to 4, respectively. RESULTS: Results indicated that Sites 2 and 3 presented greater intercostal width; Sites 3 and 4 displayed lower intercostal stiffness; Sites 2 and 3 exhibited a shorter SCD. The ICSs were significantly wider and stiffer at end-inspiration. Additionally, the liver was more easily visualized at Sites 1 and 3. CONCLUSION: We recommend Site 3 for TE probe placement owing to its greater width, lower stiffness, and smaller abdominal wall thickness. Performing TE at end-inspiration is preferred to minimize transducer-rib interferences. This study paves the way toward a standardized TE examination procedure. CRITICAL RELEVANCE STATEMENT: A standardized measurement protocol for WHO-recommended liver TE was first established to improve the success and efficiency of the examination procedure. KEY POINTS: WHO-recommended TE is unreliable or fails due to intercostal space-related factors. The 8th intercostal space on the mid-axillary line and end-inspiration are recommended. This standardized protocol aids in handling challenging cases and simplifies operational procedures.

2.
Diagnostics (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38248066

RESUMEN

Transient elastography (TE), recommended by the WHO, is an established method for characterizing liver fibrosis via liver stiffness measurement (LSM). However, technical barriers remain towards point-of-care application, as conventional TE requires wired connections, possesses a bulky size, and lacks adequate imaging guidance for precise liver localization. In this work, we report the design, phantom validation, and clinical evaluation of a palm-sized TE system that enables simultaneous B-mode imaging and LSM. The performance of this system was validated experimentally using tissue-equivalent reference phantoms (1.45-75 kPa). Comparative studies against other liver elastography techniques, including conventional TE and two-dimensional shear wave elastography (2D-SWE), were performed to evaluate its reliability and validity in adults with various chronic liver diseases. Intra- and inter-operator reliability of LSM were established by an elastography expert and a novice. A good agreement was observed between the Young's modulus reported by the phantom manufacturer and this system (bias: 1.1-8.6%). Among 121 patients, liver stiffness measured by this system and conventional TE were highly correlated (r = 0.975) and strongly agreed with each other (mean difference: -0.77 kPa). Inter-correlation of this system with conventional TE and 2D-SWE was observed. Excellent-to-good operator reliability was demonstrated in 60 patients (ICCs: 0.824-0.913). We demonstrated the feasibility of employing a fully integrated phased array probe for reliable and valid LSM, guided by real-time B-mode imaging of liver anatomy. This system represents the first technical advancement toward point-of-care liver fibrosis assessment. Its small footprint, along with B-mode guidance capability, improves examination efficiency and scales up screening for liver fibrosis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda