Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Anal Chem ; 96(39): 15598-15607, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39305236

RESUMEN

The traditional magnetic relaxation switching (MRS) sensors have excellent sensitivity, but their stability is poor because the magnetic relaxation signal is easily affected by the external magnetic field or environmental oxidation. In this study, a highly stable hydrogel bead-based MRS (Gel-MRS) sensor was established for the accurate and sensitive detection of Cd2+ in rice. A pH-responsive hydrogel bead was applied as a core element for the target stimulus and transverse relaxation signal transduction. The stability experiments showed that the transverse relaxation time (T2) change of the Gel-MRS sensor was one-seventh that of traditional magnetic nanoparticles under an external magnetic field and less than a fifth that of Fe2+/Fe3+ conversion in air. The excellent stability was due to the fact that T2 of the Gel-MRS sensor came from the swelling system mediated by pH rather than the traditional aggregation/dispersion or Fe2+/Fe3+ conversion of magnetic nanoparticles. In addition, the target Cd2+ could exclusively trigger a pH response of the hydrogel beads, altering the T2, thus resulting in excellent relaxation properties (R2 = 56.89) and pH responsiveness of the Gel-MRS sensor. The swelling process of the hydrogel beads followed quasi-second-order dynamics. The Gel-MRS sensor demonstrated a remarkable limit of detection as low as 0.009 ng/mL for Cd2+, with a linear range of 0.01-5 ng/mL. The excellent stability and sensitivity made the Gel-MRS sensor have great application potential in food and environmental detection.


Asunto(s)
Cadmio , Concentración de Iones de Hidrógeno , Cadmio/análisis , Cadmio/química , Hidrogeles/química , Oryza/química , Límite de Detección
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972443

RESUMEN

Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.


Asunto(s)
Proteínas Argonautas/fisiología , Carcinoma de Pulmón de Células no Pequeñas/etiología , Neoplasias Pulmonares/etiología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
3.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33310900

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

4.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446885

RESUMEN

Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-ß pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.


Asunto(s)
Oryza , Animales , Ratones , Oryza/genética , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Péptidos/metabolismo , Perfilación de la Expresión Génica , Células Dendríticas
5.
Anal Biochem ; 655: 114829, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940298

RESUMEN

Food safety is a global problem, and methods to reliably and sensitivity detect contaminants could be transformative. Herein, we synthesized a novel Porphyrin NanoMoFs (NanoPCN-223(Fe)) with excellent dispersion and peroxidase-like activity. The Km value of NanoPCN-223(Fe) was 2.0 × 10-4 M toward the H2O2 substrate during the catalytic process. We use the NanoPCN-223(Fe) to construct an enhanced dispersion MOF-linked immunosorbent assay (Ed-MOFLISA) to sensitive detect AFB1 in milk. The optimized Ed-MOFLISA displayed a broad quantitative range from 0.05 to 10 ng/mL and a limit of detection of 0.003 ng/mL. Spiked peanut and soy milk recovery ranged from 91.22% to 97.63%. Intra-assay and inter-assay coefficient of variation values ranged from 0.78 to 3.85%, demonstrating the outstanding reproducibility and accuracy of Ed-MOFLISA. We applied the Ed-MOFLISA assay to test the milk samples, demonstrating its potential use for monitoring food quality.


Asunto(s)
Aflatoxina B1 , Porfirinas , Aflatoxina B1/análisis , Ensayo de Inmunoadsorción Enzimática , Contaminación de Alimentos/análisis , Peróxido de Hidrógeno , Inmunoadsorbentes , Límite de Detección , Reproducibilidad de los Resultados
6.
Plant Foods Hum Nutr ; 77(2): 172-180, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35449430

RESUMEN

Inflammation is a contributing factor to the initiation and progression of many diseases, and some food-derived biofunctional peptides show high anti-inflammatory activity. In our previous study, we demonstrated that peptides derived from trypsin hydrolysis of rice protein show good immunological activity. In the present study, proteins of broken rice were extracted and identified by macroporous resin fractionation and liquid chromatography/tandem mass spectrometry (LC-MS/MS). Subsequently, a bioinformatics prediction and in silico simulation approach was used to screen for peptides showing anti-inflammatory activity, including inhibition of the production of nitric oxide and proinflammatory cytokines (interleukin-1ß, interleukin-6, and tumor necrosis factor-α) by lipopolysaccharide-stimulated RAW264.7 mice macrophages. Three peptides (DNIQGITKPAIR, IAFKTNPNSMVSHIAGK, and IGVAMDYSASSKR) that demonstrated the highest binding affinity were synthesized, and their in vitro anti-inflammatory activity was investigated. This is the first study that integrates LC-MS/MS identification and bioinformatics prediction for reporting the anti-inflammatory activity of anti-inflammatory peptides derived from broken rice protein. The study findings revealed that the peptides derived from the byproduct of rice milling could be potentially used as natural anti-inflammatory alternativities.


Asunto(s)
Oryza , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Cromatografía Liquida , Citocinas/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Células RAW 264.7 , Espectrometría de Masas en Tándem
7.
Mikrochim Acta ; 188(3): 90, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33598733

RESUMEN

The design and construction of a novel magnetic resonance sensor (MRS) is presented for bisphenol A (BPA) detection. The MRS has been built based on the core component of magnetic Fe3O4 nanoparticles (~ 40 nm), which were uniformly distributed in nanoporous carbon (abbreviated as Fe3O4@NPC). The synthesis was derived from the calcination of the metal organic framework (MOF) precursor of Fe-MIL-101 at high temperature. Fe3O4@NPC was confirmed with enhanced transversal relaxation with r2 value of 118.2 mM-1 s-1, which was around 1.7 times higher than that of the naked Fe3O4 nanoparticle. This enhancement is attributed to the excellent proton transverse relaxation rate of Fe3O4@NPC caused by the reduced self-diffusion coefficient of water molecules in the vicinity of Fe3O4 nanoparticles in the nanoporous carbon. BPA antibody (Ab) and antigen (Ag)-ovalbumin (OVA) were immobilized onto the Fe3O4@NPC to form Ab-Fe3O4@NPC and Ag-Fe3O4@NPC, respectively. These two composites can cause the three-dimensional assembly of Fe3O4@NPC via immunological recognition. The presence of BPA can compete with antigen-OVA to combine with Ab-Fe3O4@NPC, thereby breaking the assembly process (disassembly). The difference in the change of the T2 value before and after adding BPA can thus be used to monitor BPA. The proposed MRS not only revealed a wide linear range of BPA concentration from 0.05 to 50 ng mL-1 with an extremely low detection limit of 0.012 ng mL-1 (S/N = 3), but also displayed high selectivity towards matrix interferences. The recoveries of BPA ranged from 95.6 to 108.4% for spiked tea π, and 93.4 to 104.7% for spiked canned oranges samples, respectively, and the RSD (n = 3) was less than 4.4% for 3 successive assays. The versatility of Fe3O4@NPC with customized relaxation responses provides the possibility for the adaptation of magnetic resonance platforms for food safety development. The magnetic Fe3O4 nanoparticles are uniformly dispersed in the nanoporous carbon (Fe3O4@NPC), which derived from the calcinating of the metal organic framework (MOF) precursor of Fe-MIL-101. And the magnetic Fe3O4@NPCs are adopted for the construction of magnetic resonance sensor (MRS) for bisphenol A (BPA) detection.


Asunto(s)
Compuestos de Bencidrilo/análisis , Nanopartículas de Magnetita/química , Nanocompuestos/química , Fenoles/análisis , Anticuerpos Inmovilizados/inmunología , Compuestos de Bencidrilo/inmunología , Carbono/química , Citrus sinensis/química , Contaminación de Alimentos/análisis , Límite de Detección , Espectroscopía de Resonancia Magnética/métodos , Fenoles/inmunología , Porosidad , Té/química
8.
Mikrochim Acta ; 188(12): 421, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787714

RESUMEN

A Fe3O4/mesoporous graphitized carbon (Fe3O4/m-GC) composite was prepared through a facile calcination method with iron-based metal-organic frameworks (Fe-MOFs) as a sacrificial template. After carbonization, the Fe3O4 nanoparticles were uniformly dispersed in the mesoporous carbon support, resulting in spatial structural stability. The mesoporous carbon support obtained was highly graphitized and exhibited eminent electrical conductivity, which accelerated the electron transfer between the Fe3O4 nanoparticles by Fe(II)/Fe(III) redox cycles and m-GC by C = Csp2/C-Csp3 redox cycles, leading to the excellent peroxidase-mimetic activity of Fe3O4/m-GC. Km values for tetramethylbenzidine (TMB) and H2O2 were 26.8 and 15.8 times lower than that of natural horseradish peroxidase, respectively. Taking advantage of the peroxidase-mimetic activity of Fe3O4/m-GC, a colorimetric assay was fabricated for detecting glucose in the range 0.5 ~ 200 µM, with a limit of detection of 0.24 µM. Fig 1 A Schematic illustration of the preparation process of Fe3O4/m-GC, B schematic illustration of a proposed synergistic catalytic mechanism of TMB oxidation by Fe3O4/m-GC.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Óxido Ferrosoférrico/química , Glucosa/química , Peroxidasa/química
9.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823943

RESUMEN

Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal-organic frameworks, (4) graphene materials, and (5) other materials, respectively.


Asunto(s)
Metales/química , Porfirinas/química , Colorantes Fluorescentes/química , Iones , Estructuras Metalorgánicas/química , Sondas Moleculares/química
10.
Molecules ; 24(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623085

RESUMEN

MIL-100(Fe, Cr) and MIL-101(Cr) were synthesized by the hydrothermal method and applied to the adsorptions of five aromatic amines from aqueous solutions. These three metal-organic frameworks (MOFs) were well characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and surface area analysis. The adsorption mechanism of three MOFs and the effects of the structures of MOFs on the adsorption of aromatic amines were discussed. The results show that the cavity system and suitable hydrogen bond acceptor were important factors for the adsorption for five aromatic amines of aniline, 1-naphthalamine, o-toluidine, 2-amino-4-nitrotoluene and 2-nitroaniline: (a) the saturated adsorption capacity of aniline, 1-naphthylamine and o-toluidine on MIL-100(Fe) were 52.0, 53.4 and 49.6 mg/g, respectively, which can be attributed to the intermolecular hydrogen bond interaction and cavity system diffusion. (b) The adsorption capacity of 2-nitroaniline and 2-amino-4-nitrotoluene on MIL-101(Cr) were 54.3 and 25.0 mg/g, respectively, which can be attributed to the more suitable pore size of MIL-101(Cr) than that of MIL-100(Fe, Cr). The MOFs of MIL-100(Fe) and MIL-101(Cr) can be potential materials for removing aromatic amines from aqueous solutions.


Asunto(s)
Aminas/química , Estructuras Metalorgánicas/química , Modelos Químicos , Adsorción , Algoritmos , Estructuras Metalorgánicas/ultraestructura , Soluciones , Termogravimetría , Difracción de Rayos X
11.
Acta Pharmacol Sin ; 39(5): 885-892, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29698390

RESUMEN

Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.


Asunto(s)
Inhibición de Contacto/fisiología , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Recuento de Células , Proliferación Celular/fisiología , Cromonas/farmacología , Regulación hacia Abajo , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , MicroARNs/genética , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/fisiología
12.
Mol Cell ; 39(3): 421-32, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705243

RESUMEN

Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARgamma inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARgamma, revealing that PPARgamma is regulated by endogenous agonists as well as by antagonists.


Asunto(s)
Adipocitos/metabolismo , Macrófagos/metabolismo , PPAR gamma/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Células 3T3-L1 , Animales , Diferenciación Celular/fisiología , Ratones , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , PPAR gamma/genética , Ácidos Fosfatidicos/genética , Fosfolipasa D/genética , Ratas , Transcripción Genética/fisiología
13.
Biotechnol Lett ; 36(8): 1615-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24737076

RESUMEN

RVF (Arg-Val-Phe), a peptide derived from wheat germ, shows antioxidant properties. Here, the neuroprotective efficacies of RVF were investigated in human neuroblastoma cells (SH-SY5Y) that were pretreated with RVF (150-250 µM, 4 h) and exposed to H2O2 (200 µM). RVF increased viable cell numbers by 37 % and reduced the release of lactate dehydrogenase. Pretreatment with RVF also inhibited H2O2-induced accumulation of reactive oxygen species and maintained the mitochondrial transmembrane potential as well as preventing intracellular Ca(2+) dysregulation during H2O2 exposure. Furthermore, pretreatment with RVF increased the Bcl-2/Bax ratio and blocked cleavage poly(ADP-ribose) polymerase by inhibiting caspase-3 activation, thus decreasing apoptosis.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Neuroblastoma/patología , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroblastoma/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo
14.
Food Chem ; 461: 140715, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39178542

RESUMEN

Hyperlipidemia, an elevated level of cholesterol and/or triglycerides, has become a major public health problem worldwide. Although drugs intervention is effective in treating hyperlipidemia, most of them have adverse side effects. Peptides from natural plants with high anti-hyperlipidemic activity and a strong safety profile have emerged as promising candidates to prevent and ameliorate hyperlipidemia. This review summarizes the recent advances in plant-derived anti-hyperlipidemic peptides in terms of their sources, production, purification, identification, and activity evaluation. The focus is extended to their potential anti-hyperlipidemic mechanisms and structure-function relationships. Bioactive peptides derived from various plant sources, especially peptides containing hydrophobic and/or acidic amino acids, have shown remarkable effects in hyperlipidemic treatment. Their anti-hyperlipidemic effects are mediated by various mechanisms, including regulation of cholesterol metabolism and triglyceride metabolism, inhibition of inflammation-related metabolic syndrome, and modulation of the gut microbiota. Further evaluation of the stability, bioavailability, and clinical efficacy of these peptides is recommended.


Asunto(s)
Hiperlipidemias , Hipolipemiantes , Péptidos , Humanos , Hipolipemiantes/química , Hipolipemiantes/farmacología , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Péptidos/química , Péptidos/farmacología , Animales , Relación Estructura-Actividad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Colesterol/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Plantas/química
15.
Foods ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672904

RESUMEN

Epigallocatechin gallate (EGCG), the key constituent of tea polyphenols, presents challenges in terms of its lipid solubility, stability, and bioavailability because of its polyhydroxy structure. Consequently, structural modifications are imperative to enhance its efficacy. This paper comprehensively reviews the esterification techniques applied to EGCG over the past two decades and their impacts on bioactivities. Both chemical and enzymatic esterification methods involve catalysts, solvents, and hydrophobic groups as critical factors. Although the chemical method is cost-efficient, it poses challenges in purification; on the other hand, the enzymatic approach offers improved selectivity and simplified purification processes. The biological functions of EGCG are inevitably influenced by the structural changes incurred through esterification. The antioxidant capacity of EGCG derivatives can be compromised under certain conditions by reducing hydroxyl groups, while enhancing lipid solubility and stability can strengthen their antiviral, antibacterial, and anticancer properties. Additionally, esterification broadens the utility of EGCG in food applications. This review provides critical insights into developing cost-effective and environmentally sustainable selective esterification methods, as well as emphasizes the elucidation of the bioactive mechanisms of EGCG derivatives to facilitate their widespread adoption in food processing, healthcare products, and pharmaceuticals.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39158664

RESUMEN

In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 µg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H2BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 µg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.

17.
Food Chem ; 442: 138484, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271913

RESUMEN

Transglutaminase (TGase) induced-crosslinking of soy protein isolate (SPI) was markedly influenced by the substrate aggregation state. Results showed that appropriate heating significantly accelerated the TGase crosslinking, and the 7S and 11S acidic subunits were more susceptible to the enzyme than the 11S basic proteins. The content of ε-(γ-glutamyl)-lysine isopeptide bonds increased from 4.74 to 8.61 µmol/g protein when the heating intensity was increased from 75 °C for 15 min to 95 °C for 30 min, due to sufficient unfolding of the protein structure. Rheological data indicated that the gel formed from the SPI heated at 95 °C for 30 min exhibited the best properties, with a 60 % increase in the storage modulus compared with the unheated sample. However, excessive heating (95 °C, 60-120 min) caused severe aggregation of SPI and formation of insoluble aggregates, resulting in poor crosslinking efficiency and weaker gel properties.


Asunto(s)
Proteínas de Soja , Transglutaminasas , Proteínas de Soja/química , Solubilidad , Transglutaminasas/metabolismo
18.
J Hazard Mater ; 465: 133189, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38071772

RESUMEN

Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.


Asunto(s)
Antipsicóticos , Estructuras Metalorgánicas , Nanocompuestos , Humanos , Estructuras Metalorgánicas/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Adsorción , Fenómenos Magnéticos , Nanocompuestos/química , Límite de Detección
19.
Food Chem ; 463(Pt 2): 141162, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265304

RESUMEN

The extraction methods for antimicrobial peptides (AMPs) from plants are varied, but the absence of a standardized and rapid technique remains a challenge. In this study, a functionalized biochar was developed and characterized for the extraction of AMPs from pea protein hydrolysates. The results indicated that the biochar mainly enriched AMPs through electrostatic interaction, hydrogen bonding and pore filling. Then three novel cationic antimicrobial peptides were identified, among which the RDLFK (Arg-Asp-Leu-Phe-Lys) had the greatest inhibitory effect against Staphylococcus aureus and Bacillus subtilis, showcasing IC50 value of 2.372 and 1.000 mg/mL, respectively. Additionally, it was found that RDLFK could damage bacterial cell membranes and penetrate the cells to inhibit DNA synthesis. These results provided that the biochar-based extraction method presents an efficient and promising avenue for isolating AMPs, addressing a critical gap in the current methodologies for their extraction from plant sources.

20.
Food Chem ; 463(Pt 1): 141050, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236384

RESUMEN

In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda