Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Med ; 22(1): 90, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433226

RESUMEN

BACKGROUND: While circulating metabolites have been increasingly linked to cancer risk, the causality underlying these associations remains largely uninterrogated. METHODS: We conducted a comprehensive 2-sample Mendelian randomization (MR) study to evaluate the potential causal relationship between 913 plasma metabolites and the risk of seven cancers among European-ancestry individuals. Data on variant-metabolite associations were obtained from a genome-wide association study (GWAS) of plasma metabolites among 14,296 subjects. Data on variant-cancer associations were gathered from large-scale GWAS consortia for breast (N = 266,081), colorectal (N = 185,616), lung (N = 85,716), ovarian (N = 63,347), prostate (N = 140,306), renal cell (N = 31,190), and testicular germ cell (N = 28,135) cancers. MR analyses were performed with the inverse variance-weighted (IVW) method as the primary strategy to identify significant associations at Bonferroni-corrected P < 0.05 for each cancer type separately. Significant associations were subjected to additional scrutiny via weighted median MR, Egger regression, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and reverse MR analyses. Replication analyses were performed using an independent dataset from a plasma metabolite GWAS including 8,129 participants of European ancestry. RESULTS: We identified 94 significant associations, suggesting putative causal associations between 66 distinct plasma metabolites and the risk of seven cancers. Remarkably, 68.2% (45) of these metabolites were each associated with the risk of a specific cancer. Among the 66 metabolites, O-methylcatechol sulfate and 4-vinylphenol sulfate demonstrated the most pronounced positive and negative associations with cancer risk, respectively. Genetically proxied plasma levels of these two metabolites were significantly associated with the risk of lung cancer and renal cell cancer, with an odds ratio and 95% confidence interval of 2.81 (2.33-3.37) and 0.49 (0.40-0.61), respectively. None of these 94 associations was biased by weak instruments, horizontal pleiotropy, or reverse causation. Further, 64 of these 94 were eligible for replication analyses, and 54 (84.4%) showed P < 0.05 with association patterns consistent with those shown in primary analyses. CONCLUSIONS: Our study unveils plausible causal relationships between 66 plasma metabolites and cancer risk, expanding our understanding of the role of circulating metabolites in cancer genetics and etiology. These findings hold promise for enhancing cancer risk assessment and prevention strategies, meriting further exploration.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Masculino , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética
2.
Nutr J ; 21(1): 20, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346212

RESUMEN

BACKGROUND: Folic acid (FA), as a synthetic form of folate, has been widely used for dietary supplementation in pregnant women. The preventive effect of FA supplementation on the occurrence and recurrence of fetal neural tube defects (NTD) has been confirmed. Incidence of congenital heart diseases (CHD), however, has been parallelly increasing worldwide. The present study aimed to evaluate whether FA supplementation is associated with a decreased risk of CHD. METHODS: We searched the literature using PubMed, Web of Science and Google Scholar, for the peer-reviewed studies which reported CHD and FA and followed with a meta-analysis. The study-specific relative risks were used as summary statistics for the association between maternal FA supplementation and CHD risk. Cochran's Q and I2 statistics were used to test for the heterogeneity. RESULTS: Maternal FA supplementation was found to be associated with a decreased risk of CHD (OR = 0.82, 95% CI: 0.72-0.94). However, the heterogeneity of the association was high (P < 0.001, I2 = 92.7%). FA supplementation within 1 month before and after pregnancy correlated positively with CHD (OR 1.10, 95%CI 0.99-1.23), and high-dose FA intake is positively associated with atrial septal defect (OR 1.23, 95%CI 0.64-2.34). Pregnant women with irrational FA use may be at increased risk for CHD. CONCLUSIONS: Data from the present study indicate that the heterogeneity of the association between maternal FA supplementation and CHD is high and suggest that the real relationship between maternal FA supplementation and CHD may need to be further investigated with well-designed clinical studies and biological experiments.


Asunto(s)
Cardiopatías Congénitas , Defectos del Tubo Neural , Suplementos Dietéticos , Femenino , Ácido Fólico/uso terapéutico , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/prevención & control , Humanos , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/prevención & control , Embarazo , Atención Prenatal
3.
Cells ; 11(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552710

RESUMEN

Folic acid (FA) is a synthetic and highly stable version of folate, while 6S-5-methyltetrahydrofolate is the predominant form of dietary folate in circulation and is used as a crystalline form of calcium salt (MTHF-Ca). The current study aims to evaluate the toxicity and safety of FA and MTHF-Ca on embryonic development, with a focus on cardiovascular defects. We began to analyze the toxicity of FA and MTHF-Ca in zebrafish from four to seventy-two hours postfertilization and assessed the efficacy of FA and MTHF-Ca in a zebrafish angiogenesis model. We then analyzed the differently expressed genes in in vitro fertilized murine blastocysts cultured with FA and MTHF-Ca. By using gene-expression profiling, we identified a novel gene in mice that encodes an essential eukaryotic translation initiation factor (Eif1ad7). We further applied the morpholino-mediated gene-knockdown approach to explore whether the FA inhibition of this gene (eif1axb in zebrafish) caused cardiac development disorders, which we confirmed with qRT-PCR. We found that FA, but not MTHF-Ca, could inhibit angiogenesis in zebrafish and result in abnormal cardiovascular development, leading to embryonic death owing to the downregulation of eif1axb. MTHF-Ca, however, had no such cardiotoxicity, unlike FA. The current study thereby provides experimental evidence that FA, rather than MTHF-Ca, has cardiovascular toxicity in early embryonic development and suggests that excessive supplementation of FA in perinatal women may be related to the potential risk of cardiovascular disorders, such as congenital heart disease.


Asunto(s)
Ácido Fólico , Cardiopatías Congénitas , Animales , Femenino , Ratones , Embarazo , Calcio , Desarrollo Embrionario/efectos de los fármacos , Ácido Fólico/efectos adversos , Corazón , Pez Cebra/genética , Cardiopatías Congénitas/inducido químicamente , Cardiopatías Congénitas/etiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda