RESUMEN
Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.
Asunto(s)
5'-Nucleotidasa , Proteolisis , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ubiquitinación , Proteasas Ubiquitina-EspecíficasRESUMEN
KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications. Here we report a new finding that KLF4 orchestrates estrogen receptor signaling and facilitates endocrine resistance. We also uncovered the underlying mechanism that alteration of KLF4 by posttranslational modifications such as phosphorylation and ubiquitylation changes tumor cell response to endocrine therapy drugs. IHC analyses using based on human breast cancer specimens showed the accumulation of KLF4 protein in ER-positive breast cancer tissues. Elevated KLF4 expression significantly correlated with prognosis and endocrine resistance. Our drug screening for suppressing KLF4 protein expression led to identification of Src kinase to be a critical player in modulating KLF4-mediated tamoxifen resistance. Depletion of VHL (von Hippel-Lindau tumor suppressor), a ubiquitin E3 ligase for KLF4, reduces tumor cell sensitivity to tamoxifen. We demonstrated phosphorylation of VHL by Src enhances proteolysis of VHL that in turn leads to upregulation of KLF4 and increases endocrine resistance. Suppression of Src-VHL-KLF4 cascade by Src inhibitor or enhancement of VHL-KLF4 ubiquitination by TAT-KLF4 (371-420AAa) peptides re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen treatment. Taken together, our findings demonstrate a novel role for KLF4 in modulating endocrine resistance via the Src-VHL-KLF4 axis.
Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Células MCF-7RESUMEN
BACKGROUND: Blockade of mitotic progression is an ideal approach to induce mitotic catastrophe that suppresses cancer cell expansion. Cdc20 is a critical mitotic factor governing anaphase initiation and the exit from mitosis through recruiting substrates to APC/C for degradation. Results from recent TCGA (The Cancer Genome Atlas) and pathological studies have demonstrated a pivotal oncogenic role for Cdc20-APC/C in tumor progression as well as drug resistance. Thus, deprivation of the mitotic role for Cdc20-APC/C by either inhibition of Cdc20-APC/C activity or elimination of Cdc20 protein via induced protein degradation emerges as an effective therapeutic strategy to control cancer. METHODS: We designed a proteolysis targeting chimera, called CP5V, which comprises a Cdc20 ligand and VHL binding moiety bridged by a PEG5 linker that induces Cdc20 degradation. We characterized the effect of CP5V in destroying Cdc20, arresting mitosis, and inhibiting tumor progression by measuring protein degradation, 3D structure dynamics, cell cycle control, tumor cell killing and tumor inhibition using human breast cancer xenograft mouse model. FINDINGS: Results from our study demonstrate that CP5V can specifically degrade Cdc20 by linking Cdc20 to the VHL/VBC complex for ubiquitination followed by proteasomal degradation. Induced degradation of Cdc20 by CP5V leads to significant inhibition of breast cancer cell proliferation and resensitization of Taxol-resistant cell lines. Results based on a human breast cancer xenograft mouse model show a significant role for CP5V in suppressing breast tumor progression. INTERPRETATION: CP5V-mediated degradation of Cdc20 could be an effective therapeutic strategy for anti-mitotic therapy.