Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(4): 547-561, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794585

RESUMEN

BACKGROUND: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Humanos , Ratones , Apoptosis , Aterosclerosis/patología , Autofagia , Endotelio/metabolismo , Porcinos , Pez Cebra/genética
2.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514627

RESUMEN

A digital twin is a computer-based "virtual" representation of a complex system, updated using data from the "real" twin. Digital twins are established in product manufacturing, aviation, and infrastructure and are attracting significant attention in medicine. In medicine, digital twins hold great promise to improve prevention of cardiovascular diseases and enable personalised health care through a range of Internet of Things (IoT) devices which collect patient data in real-time. However, the promise of such new technology is often met with many technical, scientific, social, and ethical challenges that need to be overcome-if these challenges are not met, the technology is therefore less likely on balance to be adopted by stakeholders. The purpose of this work is to identify the facilitators and barriers to the implementation of digital twins in cardiovascular medicine. Using, the Non-adoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework, we conducted a document analysis of policy reports, industry websites, online magazines, and academic publications on digital twins in cardiovascular medicine, identifying potential facilitators and barriers to adoption. Our results show key facilitating factors for implementation: preventing cardiovascular disease, in silico simulation and experimentation, and personalised care. Key barriers to implementation included: establishing real-time data exchange, perceived specialist skills required, high demand for patient data, and ethical risks related to privacy and surveillance. Furthermore, the lack of empirical research on the attributes of digital twins by different research groups, the characteristics and behaviour of adopters, and the nature and extent of social, regulatory, economic, and political contexts in the planning and development process of these technologies is perceived as a major hindering factor to future implementation.


Asunto(s)
Atención a la Salud , Tecnología , Humanos , Tecnología/métodos , Atención a la Salud/métodos , Investigación Empírica , Simulación por Computador
3.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836984

RESUMEN

Physical activity and cardiovascular disease (CVD) are intimately linked. Low levels of physical activity increase the risk of CVDs, including myocardial infarction and stroke. Conversely, when CVD develops, it often reduces the ability to be physically active. Despite these largely understood relationships, the objective measurement of physical activity is rarely performed in routine healthcare. The ability to use sensor-based approaches to accurately measure aspects of physical activity has the potential to improve many aspects of cardiovascular healthcare across the spectrum of healthcare, from prediction, prevention, diagnosis, and treatment to disease monitoring. This review discusses the potential of sensor-based measurement of physical activity to augment current cardiovascular healthcare. We highlight many factors that should be considered to maximise the benefit and reduce the risks of such an approach. Because the widespread use of such devices in society is already a reality, it is important that scientists, clinicians, and healthcare providers are aware of these considerations.


Asunto(s)
Enfermedades Cardiovasculares , Infarto del Miocardio , Accidente Cerebrovascular , Humanos , Factores de Riesgo , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/prevención & control , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Atención a la Salud , Ejercicio Físico
4.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420916

RESUMEN

Cardiovascular diseases kill 18 million people each year. Currently, a patient's health is assessed only during clinical visits, which are often infrequent and provide little information on the person's health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices. The ability to obtain such longitudinal, clinically relevant measurements could enhance the prevention, detection and treatment of cardiovascular diseases. This review discusses the advantages and disadvantages of various methods for monitoring patients with cardiovascular disease during daily life using wearable devices. We specifically discuss three distinct monitoring domains: physical activity monitoring, indoor home monitoring and physiological parameter monitoring.


Asunto(s)
Enfermedades Cardiovasculares , Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico , Tecnología
5.
Cell Mol Life Sci ; 78(9): 4377-4398, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33688979

RESUMEN

The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microvasos/crecimiento & desarrollo , Microvasos/metabolismo , Modelos Cardiovasculares , Neovascularización Fisiológica , Transducción de Señal
6.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298352

RESUMEN

Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.


Asunto(s)
Enfermedades Cardiovasculares , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico , Aprendizaje Automático , Algoritmos
7.
Dev Dyn ; 248(6): 410-425, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980582

RESUMEN

BACKGROUND: Cilia are essential for morphogenesis and maintenance of many tissues. Loss-of-function of cilia in early Zebrafish development causes a range of vascular defects, including cerebral hemorrhage and reduced arterial vascular mural cell coverage. In contrast, loss of endothelial cilia in mice has little effect on vascular development. We therefore used a conditional rescue approach to induce endothelial cilia ablation after early embryonic development and examined the effect on vascular development and mural cell development in postembryonic, juvenile, and adult Zebrafish. RESULTS: ift54(elipsa)-mutant Zebrafish are unable to form cilia. We rescued cilia formation and ameliorated the phenotype of ift54 mutants using a novel Tg(ubi:loxP-ift54-loxP-myr-mcherry,myl7:EGFP)sh488 transgene expressing wild-type ift54 flanked by recombinase sites, then used a Tg(kdrl:cre)s898 transgene to induce endothelial-specific inactivation of ift54 at postembryonic ages. Fish without endothelial ift54 function could survive to adulthood and exhibited no vascular defects. Endothelial inactivation of ift54 did not affect development of tagln-positive vascular mural cells around either the aorta or the caudal fin vessels, or formation of vessels after tail fin resection in adult animals. CONCLUSIONS: Endothelial cilia are not essential for development and remodeling of the vasculature in juvenile and adult Zebrafish when inactivated after embryogenesis.


Asunto(s)
Endotelio Vascular , Animales
8.
Neuroradiology ; 61(5): 603-611, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30796469

RESUMEN

PURPOSE: To refine methods that assess structural brain abnormalities and calculate intracranial volumes in fetuses with congenital heart diseases (CHD) using in utero MR (iuMR) imaging. Our secondary objective was to assess the prevalence of brain abnormalities in this high-risk cohort and compare the brain volumes with normative values. METHODS: We performed iuMR on 16 pregnant women carrying a fetus with CHD and gestational age ≥ 28-week gestation and no brain abnormality on ultrasonography. All cases had fetal echocardiography by a pediatric cardiologist. Structural brain abnormalities on iuMR were recorded. Intracranial volumes were made from 3D FIESTA acquisitions following manual segmentation and the use of 3D Slicer software and were compared with normal fetuses. Z scores were calculated, and regression analyses were performed to look for differences between the normal and CHD fetuses. RESULTS: Successful 2D and 3D volume imaging was obtained in all 16 cases within a 30-min scan. Despite normal ultrasonography, 5/16 fetuses (31%) had structural brain abnormalities detected by iuMR (3 with ventriculomegaly, 2 with vermian hypoplasia). Brain volume, extra-axial volume, and total intracranial volume were statistically significantly reduced, while ventricular volumes were increased in the CHD cohort. CONCLUSION: We have shown that it is possible to perform detailed 2D and 3D studies using iuMR that allow thorough investigation of all intracranial compartments in fetuses with CHD in a clinically appropriate scan time. Those fetuses have a high risk of structural brain abnormalities and smaller brain volumes even when brain ultrasonography is normal.


Asunto(s)
Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Cardiopatías Congénitas/complicaciones , Imagen por Resonancia Magnética/métodos , Adulto , Estudios de Casos y Controles , Ecocardiografía , Estudios de Factibilidad , Femenino , Cardiopatías Congénitas/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Tamaño de los Órganos , Embarazo , Diagnóstico Prenatal , Estudios Prospectivos , Programas Informáticos
9.
Circ Res ; 119(3): 450-62, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27245171

RESUMEN

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Asunto(s)
Aterosclerosis/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/metabolismo , Proteínas Nucleares/biosíntesis , Proteína 1 Relacionada con Twist/biosíntesis , Animales , Aterosclerosis/patología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Porcinos , Pez Cebra
10.
Arterioscler Thromb Vasc Biol ; 37(1): 130-143, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834691

RESUMEN

OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.


Asunto(s)
Apoptosis , Aterosclerosis/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Células Cultivadas , Embrión no Mamífero/irrigación sanguínea , Células Endoteliales/patología , Femenino , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Fenotipo , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Porcinos , Transcriptoma , Transfección , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
J Mol Cell Cardiol ; 85: 207-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26073630

RESUMEN

Genome-wide association studies (GWAS) have identified genetic variants in a number of chromosomal regions that are associated with atrial fibrillation (AF). The mechanisms underlying these associations are unknown, but are likely to involve effects of the risk haplotypes on expression of neighbouring genes. To investigate the association between genetic variants at AF-associated loci and expression of nearby candidate genes in human atrial tissue and peripheral blood. Right atrial appendage (RAA) samples were collected from 122 patients undergoing cardiac surgery, of these, 12 patients also had left atrial appendage samples taken. 22 patients had a history of AF. Peripheral blood samples were collected from 405 patients undergoing diagnostic cardiac catheterisation. In order to tag genetic variation at each of nine loci, a total of 367 single nucleotide polymorphisms (SNPs) were genotyped using the Sequenom platform. Total expression of 16 candidate genes in the nine AF-associated regions was measured by quantitative PCR. The relative expression of each allele of the candidate genes was measured on the Sequenom platform using one or more transcribed SNPs to distinguish between alleles in heterozygotes. We tested association between the SNPs of interest and gene expression using total gene expression (integrating cis and trans acting sources of variation), and allelic expression ratios (specific for cis acting influences), in atrial tissue and peripheral blood. We adjusted for multiple comparisons using a Bonferroni approach. In subsidiary analyses, we compared the expression of candidate genes between patients with and without a history of AF. Total expression of 15 transcripts of 14 genes and allelic expression ratio of 14 transcripts of 14 genes in genomic regions associated with AF were measured in right atrial appendage tissue. 8 of these transcripts were also expressed in peripheral blood. Risk alleles at AF-associated SNPs were associated in cis with an increased expression of PITX2a (2.01-fold, p=6.5×10(-4)); and with decreased expression of MYOZ1 (0.39 fold; p=5.5×10(-15)), CAV1 (0.89 fold; p=5.9×10(-8)), C9orf3 (0.91 fold; 1.5×10(-5)), and FANCC (0.94-fold; p=8.9×10(-8)) in right atrial appendage. Of these five genes, only CAV1 was expressed in peripheral blood; association between the same AF risk alleles and lower expression of CAV1 was confirmed (0.91 fold decrease; p=4.2×10(-5)). A history of AF was also associated with a decrease in expression of CAV1 in both right and left atria (0.84 and 0.85 fold, respectively; p=0.03), congruent with the magnitude of the effect of the risk SNP on expression, and independent of genotype. The analyses in peripheral blood showed association between AF risk SNPs and decreased expression of KCNN3 (0.85-fold; p=2.1×10(-4)); and increased expression of SYNE2 (1.12-fold; p=7.5×10(-24)); however, these associations were not detectable in atrial tissue. We identified novel cis-acting associations in atrial tissue between AF risk SNPs and increased expression of PITX2a/b; and decreased expression of CAV1 (an association also seen in peripheral blood), C9orf3 and FANCC. We also confirmed a previously described association between AF risk variants and MYOZ1 expression. Analyses of peripheral blood illustrated tissue-specificity of cardiac eQTLs and highlight the need for larger-scale genome-wide eQTL studies in cardiac tissue. Our results suggest novel aetiological roles for genes in four AF-associated genomic regions.


Asunto(s)
Aminopeptidasas/metabolismo , Fibrilación Atrial/genética , Proteínas Portadoras/metabolismo , Caveolina 1/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Aminopeptidasas/genética , Fibrilación Atrial/metabolismo , Proteínas Portadoras/genética , Caveolina 1/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Atrios Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Humanos , Proteínas Musculares/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de Riesgo , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
13.
Angiogenesis ; 17(1): 77-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23959107

RESUMEN

Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Sulfatasas/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Arterias/embriología , Arterias/metabolismo , Efrina-B2/inmunología , Efrina-B2/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicocálix/genética , Glicocálix/metabolismo , Morfolinos/farmacología , Oligonucleótidos Antisentido/farmacología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfatasas/antagonistas & inhibidores , Sulfatasas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
14.
Arterioscler Thromb Vasc Biol ; 33(6): 1257-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23559631

RESUMEN

OBJECTIVE: Coarctation of the aorta is rarely associated with known gene defects. Blomstrand chondrodysplasia, caused by mutations in the parathyroid hormone receptor 1 (PTHR1) is associated with coarctation of the aorta in some cases, although it is unclear whether PTHR1 deficiency causes coarctation of the aorta directly. The zebrafish allows the study of vascular development using approaches not possible in other models. We therefore examined the effect of loss of function of PTHR1 or its ligand parathyroid hormone-related peptide (PTHrP) on aortic formation in zebrafish. APPROACH AND RESULTS: Morpholino antisense oligonucleotide knockdown of either PTHR1 or PTHrP led to a localized occlusion of the mid-aorta in developing zebrafish. Confocal imaging of transgenic embryos showed that these defects were caused by loss of endothelium, rather than failure to lumenize. Using a Notch reporter transgenic ([CSL:Venus]qmc61), we found both PTHR1 and PTHrP knockdown-induced defective Notch signaling in the hypochord at the site of the aortic defect before onset of circulation, and the aortic occlusion was rescued by inducible Notch upregulation. CONCLUSIONS: Loss of function of either PTHR1 or PTHrP leads to a localized aortic defect that is Notch dependent. These findings may underlie the aortic defect seen in Blomstrand chondrodysplasia, and reveal a link between parathyroid hormone and Notch signaling during aortic development.


Asunto(s)
Aorta/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Receptor Notch1/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Animales , Coartación Aórtica/genética , Coartación Aórtica/fisiopatología , Femenino , Masculino , Modelos Animales , Mutación/genética , Neovascularización Fisiológica/genética , Valores de Referencia , Regulación hacia Arriba , Pez Cebra
15.
Drug Discov Today Technol ; 10(1): e109-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050238

RESUMEN

The zebrafish is increasingly being adopted as an in vivo model of high throughput drug screening. In this brief review we outline the advantages and disadvantages of this approach and summarize recent screens that have attempted to identify novel small molecules with activity on the cardiovascular system.


Asunto(s)
Fármacos Cardiovasculares , Ensayos Analíticos de Alto Rendimiento , Pez Cebra , Animales , Evaluación Preclínica de Medicamentos
16.
Dis Model Mech ; 16(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861761

RESUMEN

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling. Adult endoglin mutant zebrafish developed skin AVMs, retinal vascular abnormalities and cardiac enlargement. Embryonic endoglin mutants developed an enlarged basilar artery (similar to the previously described enlarged aorta and cardinal vein) and larger numbers of endothelial membrane cysts (kugeln) on cerebral vessels. Vegf inhibition prevented these embryonic phenotypes, leading us to investigate specific Vegf signalling pathways. Inhibiting mTOR or MEK pathways prevented abnormal trunk and cerebral vasculature phenotypes, whereas inhibiting Nos or Mapk pathways had no effect. Combined subtherapeutic mTOR and MEK inhibition prevented vascular abnormalities, confirming synergy between these pathways in HHT. These results indicate that the HHT-like phenotype in zebrafish endoglin mutants can be mitigated through modulation of Vegf signalling. Combined low-dose MEK and mTOR pathway inhibition could represent a novel therapeutic strategy in HHT.


Asunto(s)
Malformaciones Arteriovenosas , Telangiectasia Hemorrágica Hereditaria , Animales , Telangiectasia Hemorrágica Hereditaria/tratamiento farmacológico , Telangiectasia Hemorrágica Hereditaria/genética , Pez Cebra/metabolismo , Endoglina/genética , Factor A de Crecimiento Endotelial Vascular/genética , Malformaciones Arteriovenosas/genética , Serina-Treonina Quinasas TOR , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Receptores de Activinas Tipo II/genética , Mutación/genética
17.
Lancet Digit Health ; 5(7): e467-e476, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37391266

RESUMEN

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Dispositivos Electrónicos Vestibles , Humanos , Enfermedades Cardiovasculares/diagnóstico
18.
Arterioscler Thromb Vasc Biol ; 31(9): 1988-90, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21636807

RESUMEN

OBJECTIVE: Epidemiological studies link higher serum phosphate and the phosphatonin fibroblast growth factor 23 with cardiovascular events and atheroma, and they link lower serum phosphate with insulin resistance and the metabolic syndrome. We investigated whether manipulating dietary phosphate influences atherogenesis or insulin sensitivity in mice. METHODS AND RESULTS: Apolipoprotein E knockout mice were fed an atherogenic diet with low (0.2%), standard (0.6%), or high (1.6%) phosphate content. Serum phosphate and fibroblast growth factor 23 significantly increased with increasing dietary phosphate intake, but lipid profile and blood pressure were unaffected. After 20 weeks, mice on the higher phosphate diet had significantly more atheroma at the aortic sinus (42±1.9% versus 30±1.5% for high versus low phosphate, P<0.01). Compared with standard and high-phosphate diet groups, mice on a low-phosphate diet had more adipose tissue and a 4-fold increase in insulin resistance measured by homeostatic model assessment (43.7±9.3 versus 8.9±0.7 for low versus high phosphate, P<0.005). CONCLUSIONS: A high-phosphate diet accelerates atherogenesis in apolipoprotein E(-/-) mice, whereas low phosphate intake induces insulin resistance. These data indicate for the first time that controlling dietary phosphate intake may influence development of both atherosclerosis and the metabolic syndrome.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/etiología , Resistencia a la Insulina , Fosfatos/administración & dosificación , Adiposidad , Animales , Hígado Graso/etiología , Masculino , Ratones , Ratones Noqueados
19.
Curr Protoc ; 2(5): e443, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35617469

RESUMEN

With advancements in imaging techniques, data visualization allows new insights into fundamental biological processes of development and disease. However, although biomedical science is heavily reliant on imaging data, interpretation of datasets is still often based on subjective visual assessment rather than rigorous quantitation. This overview presents steps to validate image processing and segmentation using the zebrafish brain vasculature data acquired with light sheet fluorescence microscopy as a use case. Blood vessels are of particular interest to both medical and biomedical science. Specific image enhancement filters have been developed that enhance blood vessels in imaging data prior to segmentation. Using the Sato enhancement filter as an example, we discuss how filter application can be evaluated and optimized. Approaches from the medical field such as simulated, experimental, and augmented datasets can be used to gain the most out of the data at hand. Using such datasets, we provide an overview of how biologists and data analysts can assess the accuracy, sensitivity, and robustness of their segmentation approaches that allow extraction of objects from images. Importantly, even after optimization and testing of a segmentation workflow (e.g., from a particular reporter line to another or between immunostaining processes), its generalizability is often limited, and this can be tested using double-transgenic reporter lines. Lastly, due to the increasing importance of deep learning networks, a comparative approach can be adopted to study their applicability to biological datasets. In summary, we present a broad methodological overview ranging from image enhancement to segmentation with a mixed approach of experimental, simulated, and augmented datasets to assess and validate vascular segmentation using the zebrafish brain vasculature as an example. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. HIGHLIGHTS: Simulated, experimental, and augmented datasets provide an alternative to overcome the lack of segmentation gold standards and phantom models for zebrafish cerebrovascular segmentation. Direct generalization of a segmentation approach to the data for which it was not optimized (e.g., different transgenics or antibody stainings) should be treated with caution. Comparison of different deep learning segmentation methods can be used to assess their applicability to data. Here, we show that the zebrafish cerebral vasculature can be segmented with U-Net-based architectures, which outperform SegNet architectures.


Asunto(s)
Fenómenos Biológicos , Pez Cebra , Animales , Animales Modificados Genéticamente , Encéfalo/diagnóstico por imagen , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador/métodos
20.
Birth Defects Res C Embryo Today ; 93(2): 134-40, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21671353

RESUMEN

The zebrafish is emerging as a novel model for the study of embryonic vascular development. In this review we summarize the advantages of this intriguing experimental system and the advances in our understanding of the molecular control of vascular development it has allowed.


Asunto(s)
Sistema Cardiovascular/anatomía & histología , Sistema Cardiovascular/embriología , Modelos Animales , Neovascularización Fisiológica/fisiología , Pez Cebra/embriología , Animales , Arterias/metabolismo , Efrina-B2/metabolismo , Proteínas Hedgehog/metabolismo , Receptor EphB4/metabolismo , Receptores Notch/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Venas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda