Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(12): 3305-10, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951664

RESUMEN

Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies.


Asunto(s)
Aprendizaje Automático , Hojas de la Planta
2.
IEEE Trans Pattern Anal Mach Intell ; 29(4): 561-72, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17299214

RESUMEN

Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key." The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments.


Asunto(s)
Inteligencia Artificial , Biometría/métodos , Dermatoglifia/clasificación , Dedos/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Algoritmos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
3.
Vision Res ; 50(22): 2233-47, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20493206

RESUMEN

In the theoretical framework of this paper, attention is part of the inference process that solves the visual recognition problem of what is where. The theory proposes a computational role for attention and leads to a model that predicts some of its main properties at the level of psychophysics and physiology. In our approach, the main goal of the visual system is to infer the identity and the position of objects in visual scenes: spatial attention emerges as a strategy to reduce the uncertainty in shape information while feature-based attention reduces the uncertainty in spatial information. Featural and spatial attention represent two distinct modes of a computational process solving the problem of recognizing and localizing objects, especially in difficult recognition tasks such as in cluttered natural scenes. We describe a specific computational model and relate it to the known functional anatomy of attention. We show that several well-known attentional phenomena--including bottom-up pop-out effects, multiplicative modulation of neuronal tuning curves and shift in contrast responses--all emerge naturally as predictions of the model. We also show that the Bayesian model predicts well human eye fixations (considered as a proxy for shifts of attention) in natural scenes.


Asunto(s)
Atención/fisiología , Teorema de Bayes , Percepción Visual/fisiología , Fijación Ocular/fisiología , Percepción de Forma/fisiología , Humanos , Modelos Teóricos , Reconocimiento en Psicología , Percepción Espacial/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda