Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498967

RESUMEN

Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish.


Asunto(s)
Dorada , Animales , Dorada/genética , Dorada/metabolismo , Proteínas Musculares/metabolismo , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Micropéptidos
2.
FASEB J ; : fj201700717RR, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29812971

RESUMEN

Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.

3.
Biochem J ; 473(3): 233-44, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26537754

RESUMEN

The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinuria/metabolismo , Polisacáridos/metabolismo , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Cistina/metabolismo , Cistinuria/genética , Dimerización , Glicosilación , Células HeLa , Humanos
4.
PLoS Genet ; 8(4): e1002605, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511876

RESUMEN

Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT-PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Impresión Genómica , Desnutrición , Animales , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Desnutrición/genética , Desnutrición/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo
5.
Sci Rep ; 14(1): 17263, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068287

RESUMEN

The excessive accumulation and malfunctioning of visceral adipose tissue (VAT) is a major determinant of increased risk of obesity-related comorbidities. Thus, risk stratification of people living with obesity according to their amount of VAT is of clinical interest. Currently, the most common VAT measurement methods include mathematical formulae based on anthropometric dimensions, often biased by human measurement errors, bio-impedance, and image techniques such as X-ray absorptiometry (DXA) analysis, which requires specialized equipment. However, previous studies showed the possibility of classifying people living with obesity according to their VAT through blood chemical concentrations by applying machine learning techniques. In addition, most of the efforts were spent on men living with obesity while little was done for women. Therefore, this study aims to compare the performance of the multilinear regression model (MLR) in estimating VAT and six different supervised machine learning classifiers, including logistic regression (LR), support vector machine and decision tree-based models, to categorize 149 women living with obesity. For clustering, the study population was categorized into classes 0, 1, and 2 according to their VAT and the accuracy of each MLR and classification model was evaluated using DXA-data (DXAdata), blood chemical concentrations (BLDdata), and both DXAdata and BLDdata together (ALLdata). Estimation error and R 2 were computed for MLR, while receiver operating characteristic (ROC) and precision-recall curves (PR) area under the curve (AUC) were used to assess the performance of every classification model. MLR models showed a poor ability to estimate VAT with mean absolute error ≥ 401.40 and R 2 ≤ 0.62 in all the datasets. The highest accuracy was found for LR with values of 0.57, 0.63, and 0.53 for ALLdata, DXAdata, and BLDdata, respectively. The ROC AUC showed a poor ability of both ALLdata and DXAdata to distinguish class 1 from classes 0 and 2 (AUC = 0.31, 0.71, and 0.85, respectively) as also confirmed by PR (AUC = 0.24, 0.57, and 0.73, respectively). However, improved performances were obtained when applying LR model to BLDdata (ROC AUC ≥ 0.61 and PR AUC ≥ 0.42), especially for class 1. These results seem to suggest that, while a direct and reliable estimation of VAT was not possible in our cohort, blood sample-derived information can robustly classify women living with obesity by machine learning-based classifiers, a fact that could benefit the clinical practice, especially in those health centres where medical imaging devices are not available. Nonetheless, these promising findings should be further validated over a larger population.


Asunto(s)
Absorciometría de Fotón , Grasa Intraabdominal , Aprendizaje Automático , Obesidad , Humanos , Femenino , Obesidad/complicaciones , Persona de Mediana Edad , Adulto , Absorciometría de Fotón/métodos , Máquina de Vectores de Soporte , Árboles de Decisión , Anciano
6.
J Biol Chem ; 287(22): 18190-200, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493502

RESUMEN

We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Pliegue de Proteína , Animales , Secuencia de Bases , Dominio Catalítico , Línea Celular , Cartilla de ADN , Perros , Electroforesis en Gel de Campo Pulsado , Humanos , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Oxidación-Reducción
7.
Nutrients ; 15(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764752

RESUMEN

The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Tejido Adiposo , Adipocitos , Obesidad , Lípidos
8.
Obes Rev ; 24(12): e13627, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37608466

RESUMEN

Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Niño , Animales , Ratones , Humanos , Adolescente , Adulto Joven , Obesidad Infantil/etiología , Obesidad Infantil/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad
9.
Nutrients ; 15(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904241

RESUMEN

Childhood obesity increases the risk of developing metabolic syndrome later in life. Moreover, metabolic dysfunction may be inherited into the following generation through non-genomic mechanisms, with epigenetics as a plausible candidate. The pathways involved in the development of metabolic dysfunction across generations in the context of childhood obesity remain largely unexplored. We have developed a mouse model of early adiposity by reducing litter size at birth (small litter group, SL: 4 pups/dam; control group, C: 8 pups/dam). Mice raised in small litters (SL) developed obesity, insulin resistance and hepatic steatosis with aging. Strikingly, the offspring of SL males (SL-F1) also developed hepatic steatosis. Paternal transmission of an environmentally induced phenotype strongly suggests epigenetic inheritance. We analyzed the hepatic transcriptome in C-F1 and SL-F1 mice to identify pathways involved in the development of hepatic steatosis. We found that the circadian rhythm and lipid metabolic process were the ontologies with highest significance in the liver of SL-F1 mice. We explored whether DNA methylation and small non-coding RNAs might be involved in mediating intergenerational effects. Sperm DNA methylation was largely altered in SL mice. However, these changes did not correlate with the hepatic transcriptome. Next, we analyzed small non-coding RNA content in the testes of mice from the parental generation. Two miRNAs (miR-457 and miR-201) appeared differentially expressed in the testes of SL-F0 mice. They are known to be expressed in mature spermatozoa, but not in oocytes nor early embryos, and they may regulate the transcription of lipogenic genes, but not clock genes, in hepatocytes. Hence, they are strong candidates to mediate the inheritance of adult hepatic steatosis in our murine model. In conclusion, litter size reduction leads to intergenerational effects through non-genomic mechanisms. In our model, DNA methylation does not seem to play a role on the circadian rhythm nor lipid genes. However, at least two paternal miRNAs might influence the expression of a few lipid-related genes in the first-generation offspring, F1.


Asunto(s)
Hígado Graso , MicroARNs , Obesidad Infantil , Masculino , Ratones , Animales , Modelos Animales de Enfermedad , Semen , Epigénesis Genética , Metilación de ADN , Lípidos
10.
Mol Metab ; 71: 101707, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933618

RESUMEN

BACKGROUND/PURPOSE: Litter size is a biological variable that strongly influences adult physiology in rodents. Despite evidence from previous decades and recent studies highlighting its major impact on metabolism, information about litter size is currently underreported in the scientific literature. Here, we urge that this important biological variable should be explicitly stated in research articles. RESULTS/CONCLUSION: Below, we briefly describe the scientific evidence supporting the impact of litter size on adult physiology and outline a series of recommendations and guidelines to be implemented by investigators, funding agencies, editors in scientific journals, and animal suppliers to fill this important gap.


Asunto(s)
Roedores , Embarazo , Animales , Femenino , Tamaño de la Camada/fisiología
11.
Front Nutr ; 9: 1026694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386926

RESUMEN

Obesity during childhood is of special concern as adiposity is typically tracked into adult life and it constitutes a major risk factor for future obesity and associated metabolic disorders. Recent studies indicate that time-restricted feeding (TRF) interventions may provide a promising strategy for obesity treatment. However, TRF interventions have only been tested in adult subjects. This study aims to determine both short- and long-term effects of a TRF intervention in children and adolescents with obesity. We will also investigate potential mechanisms mediating the response to the intervention, including the circadian rhythm and the gut microbiota composition. We have designed a randomized-controlled parallel-group clinical study in which children and adolescents (age range 8-18 year-old) with obesity will be subjected to time-restricted eating or no time restrictions for 2 months. Follow-up visits will allow for long-term effect assessments. We will measure anthropometric (BMI, body composition) and metabolic parameters (glucose and lipid metabolism), indicators of the circadian rhythm, and gut microbiota composition will be analyzed. This study will (1) determine safety and effectiveness of the TRF intervention in children and adolescents; (2) assess its long-term effects; and (3) evaluate potential mechanisms involved in the response to the intervention. Clinical trial registration: [www.ClinicalTrials.gov], identifier [NCT05174871].

12.
Nutrients ; 13(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684586

RESUMEN

BACKGROUND: Time restricted feeding (TRF) refers to dietary interventions in which food access is limited during a specific timeframe of the day. TRFs have proven useful in improving metabolic health in adult subjects with obesity. Their beneficial effects are mediated, in part, through modulating the circadian rhythm. Nevertheless, the translation of these dietary interventions onto obese/overweight children and adolescents remains uncharacterized. The objective of this study is to explore the feasibility of temporal dietary interventions for improving metabolic health in the context of childhood obesity. METHODS: We have previously developed a mouse model of early adiposity (i.e., childhood obesity) through litter size reduction. Mice raised in small litters (SL) became obese as early as by two weeks of age, and as adults, they developed several obesity-related co-morbidities, including insulin resistance, glucose intolerance and hepatic steatosis. Here, we explored whether two independent short-term chrono-nutritional interventions might improve metabolic health in 1-month-old pre-pubertal SL mice. Both TRFs comprised 8 h feeding/14 h fasting. In the first one (TRF1) Control and SL mice had access to the diet for 8 h during the dark phase. In the second intervention (TRF2) food was available during the light:dark transitions. RESULTS: TRF1 did not alter food intake nor ameliorate adiposity in SL-TRF1. In contrast, SL-TRF2 mice showed unintentional reduction of caloric intake, which was accompanied by reduced total body weight and adiposity. Strikingly, hepatic triglyceride content was completely normalized in SL-TRF1 and SL-TRF2 mice, when compared to the ad lib-fed SL mice. These effects were partially mediated by (i) clock-dependent signals, which might modulate the expression of Pparg or Cpt1a, and (ii) clock-independent signals, such as fasting itself, which could influence Fasn expression. CONCLUSIONS: Time-restricted feeding is an effective and feasible nutritional intervention to improve metabolic health, namely hepatic steatosis, in a model of childhood obesity. These data open new avenues for future safe and efficient chrono-nutritional interventions aimed to improve metabolic health in children with overweight/obesity.


Asunto(s)
Adiposidad , Ayuno , Hígado Graso/complicaciones , Hígado Graso/prevención & control , Obesidad Infantil/complicaciones , Maduración Sexual , Animales , Relojes Circadianos/genética , Dieta , Modelos Animales de Enfermedad , Hígado Graso/genética , Regulación de la Expresión Génica , Resistencia a la Insulina , Tamaño de la Camada , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Oxidación-Reducción , Obesidad Infantil/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
13.
Mol Metab ; 45: 101162, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422644

RESUMEN

Childhood obesity is a strong risk factor for adult obesity, type 2 diabetes, and cardiovascular disease. The mechanisms that link early adiposity with late-onset chronic diseases are poorly characterised. We developed a mouse model of early adiposity through litter size reduction. Mice reared in small litters (SLs) developed obesity, insulin resistance, and hepatic steatosis during adulthood. The liver played a major role in the development of the disease. OBJECTIVE: To gain insight into the molecular mechanisms that link early development and childhood obesity with adult hepatic steatosis and insulin resistance. METHODS: We analysed the hepatic transcriptome (Affymetrix) of control and SL mice to uncover potential pathways involved in the long-term programming of disease in our model. RESULTS: The circadian rhythm was the most significantly deregulated Gene Ontology term in the liver of adult SL mice. Several core clock genes, such as period 1-3 and cryptochrome 1-2, were altered in two-week-old SL mice and remained altered throughout their life course until they reached 4-6 months of age. Defective circadian rhythm was restricted to the periphery since the expression of clock genes in the hypothalamus, the central pacemaker, was normal. The period-cryptochrome genes were primarily entrained by dietary signals. Hence, restricting food availability during the light cycle only uncoupled the central rhythm from the peripheral and completely normalised hepatic triglyceride content in adult SL mice. This effect was accompanied by better re-alignment of the hepatic period genes, suggesting that they might have played a causal role in mediating hepatic steatosis in the adult SL mice. Functional downregulation of Per2 in hepatocytes in vitro confirmed that the period genes regulated lipid-related genes in part through peroxisome proliferator-activated receptor alpha (Ppara). CONCLUSIONS: The hepatic circadian rhythm matures during early development, from birth to postnatal day 30. Hence, nutritional challenges during early life may misalign the hepatic circadian rhythm and secondarily lead to metabolic derangements. Specific time-restricted feeding interventions improve metabolic health in the context of childhood obesity by partially re-aligning the peripheral circadian rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Lactancia , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adiposidad , Adulto , Animales , Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2/metabolismo , Ayuno , Femenino , Humanos , Hipotálamo/metabolismo , Recién Nacido , Resistencia a la Insulina/fisiología , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos ICR , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Obesidad Infantil
14.
Sci Transl Med ; 13(587)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790021

RESUMEN

Accelerated postnatal growth is a potentially modifiable risk factor for future obesity. To study how specific breast milk components contribute to early growth and obesity risk, we quantified one-carbon metabolism-related metabolites in human breast milk and found an inverse association between milk betaine content and infant growth. This association was replicated in an independent and geographically distinct cohort. To determine the potential role of milk betaine in modulating offspring obesity risk, we performed maternal betaine supplementation experiments in mice. Higher betaine intake during lactation increased milk betaine content in dams and led to lower adiposity and improved glucose homeostasis throughout adulthood in mouse offspring. These effects were accompanied by a transient increase in Akkermansia spp. abundance in the gut during early life and a long-lasting increase in intestinal goblet cell number. The link between breast milk betaine and Akkermansia abundance in the gut was also observed in humans, as infants exposed to higher milk betaine content during breastfeeding showed higher fecal Akkermansia muciniphila abundance. Furthermore, administration of A. muciniphila to mouse pups during the lactation period partially replicated the effects of maternal breast milk betaine, including increased intestinal goblet cell number, lower adiposity, and improved glucose homeostasis during adulthood. These data demonstrate a link between breast milk betaine content and long-term metabolic health of offspring.


Asunto(s)
Betaína , Leche Humana , Akkermansia , Animales , Dieta Alta en Grasa , Femenino , Lactancia , Ratones
15.
Hum Mol Genet ; 17(12): 1845-54, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18332091

RESUMEN

Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded. We analyzed the initial biogenesis of wild-type rBAT and type I cystinuria rBAT mutants. rBAT was degraded, at least in part, via the ERAD pathway. Assembly with b(0,+)AT within the endoplasmic reticulum (ER) blocked rBAT degradation and could be independent of the calnexin chaperone system. This system was, however, necessary for post-assembly maturation of the heterodimer. Without b(0,+)AT, wild-type and rBAT mutants were degraded with similar kinetics. In its presence, rBAT mutants showed strongly reduced (L89P) or no transport activity, failed to acquire complex N-glycosylation and to oligomerize, suggesting assembly and/or folding defects. Most of the transmembrane domain mutant L89P did not heterodimerize with b(0,+)AT and was degraded. However, the few [L89P]rBAT-b(0,+)AT heterodimers were stable, consistent with assembly, but not folding, defects. Mutants of the rBAT extracellular domain (T216M, R365W, M467K and M467T) efficiently assembled with b(0,+)AT but were subsequently degraded. Together with earlier results, the data suggest a two-step biogenesis model, with the early assembly of the subunits followed by folding of the rBAT extracellular domain. Defects on either of these steps lead to the type I cystinuria phenotype.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinuria/genética , Dimerización , Células HeLa , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas
16.
Nutrients ; 12(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348700

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is on the rise worldwide representing a public health issue. Its coexistence with obesity and other metabolic alterations is highly frequent. Therefore, current therapy interventions for NAFLD are mainly focused on progressive weight loss through modulation of overall calorie intake with or without specific macronutrient adjustments. Furthermore, other relevant nutritional interventions are built on food selection and time-restricted eating. Since every strategy might bring different results, choosing the optimal diet therapy for a patient is a complicated task, because NAFLD is a multifactorial complex disease. Importantly, some factors need to be considered, such as nutrition-based evidence in terms of hepatic morphophysiological improvements as well as adherence of the patient to the meal plan and adaptability in their cultural context. Thus, the purpose of this review is to explore and compare the subtleties and nuances of the most relevant clinical practice guidelines and the nutritional approaches for the management of NAFLD with a special attention to tangible outcomes and long-term adherence.


Asunto(s)
Medicina Basada en la Evidencia/métodos , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Ayuno , Conducta Alimentaria , Humanos
17.
Cell Metab ; 32(3): 334-340, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814016

RESUMEN

In this essay, we highlight how litter size in rodents is a strong determinant of neonatal growth and long-term metabolic health. Based on these effects, we strongly advise that scientific articles that utilize rodent models for obesity and metabolic research should include information on the litter sizes in the study to increase the data transparency of such reports.


Asunto(s)
Obesidad/metabolismo , Animales , Tamaño de la Camada , Ratones , Ratas
18.
Nutrients ; 12(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066107

RESUMEN

Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by a wide range of clinical manifestations, including obesity, hyperphagia, and behavioral problems. Bifidobacterium animalis subsp. lactis strain BPL1 has been shown to improve central adiposity in adults with simple obesity. To evaluate BPL1's effects in children with PWS, we performed a randomized crossover trial among 39 patients (mean age 10.4 years). Participants were randomized to placebo-BPL1 (n = 19) or BPL1-placebo (n = 20) sequences and underwent a 12-week period with placebo/BPL1 treatments, a 12-week washout period, and a 12-week period with the crossover treatment. Thirty-five subjects completed the study. The main outcome was changes in adiposity, measured by dual-energy X-ray absorptiometry. Secondary outcomes included lipid and glucose metabolism, hyperphagia, and mental health symptoms. Generalized linear modeling was applied to assess differences between treatments. While BPL1 did not modify total fat mass compared to placebo, BPL1 decreased abdominal adiposity in a subgroup of patients older than 4.5 years (n = 28). BPL1 improved fasting insulin concentration and insulin sensitivity. Furthermore, we observed modest improvements in some mental health symptoms. A follow-up trial with a longer treatment period is warranted to determine whether BPL1 supplementation can provide a long-term therapeutic approach for children with PWS (ClinicalTrials.gov NCT03548480).


Asunto(s)
Adiposidad , Bifidobacterium animalis , Fenómenos Fisiológicos Nutricionales Infantiles/fisiología , Suplementos Dietéticos , Síndrome de Prader-Willi/dietoterapia , Síndrome de Prader-Willi/metabolismo , Probióticos/administración & dosificación , Adolescente , Niño , Conducta Infantil , Preescolar , Estudios Cruzados , Femenino , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Síndrome de Prader-Willi/psicología , Resultado del Tratamiento
19.
Sci Rep ; 9(1): 14065, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575908

RESUMEN

CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.


Asunto(s)
Aminoácidos/metabolismo , Ciclo Celular , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Nucleótidos/metabolismo , Aminoácidos Aromáticos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , División Celular , Daño del ADN , Reparación del ADN , Cadena Pesada de la Proteína-1 Reguladora de Fusión/fisiología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Oxidativo
20.
Obesity (Silver Spring) ; 26(10): 1603-1610, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30204940

RESUMEN

OBJECTIVE: Early lifestyle interventions in children with obesity decrease risk of obesity and metabolic disorders during adulthood. This study aimed to identify metabolic signatures associated with lifestyle intervention in urine samples from prepubertal children with obesity. METHODS: Thirty-four prepubertal children with obesity were studied before and after a 6-month lifestyle intervention program, and anthropometric, metabolic, and nutritional variables were collected. A nuclear magnetic resonance approach was applied to obtain the metabolomic profile from urine samples. Partial least squares-discriminant analysis (PLS-DA) was used to achieve group classification and variable importance on projection (VIP) for biomarker selection. RESULTS: The intervention reduced caloric intake by 10% (P < 0.05) and BMI standard deviation score by 0.47 SD (P < 0.001). PLS-DA identified trimethylamine N-oxide (TMAO, VIP = 2.21) as the metabolite with the highest discrimination properties between groups. Urine TMAO levels were reduced after the intervention (P < 0.05). TMAO is a biomarker of cardiovascular disease risk and is a product of gut microbiota-dependent metabolism of certain dietary compounds, including choline. Notably, changes in TMAO levels after the intervention did not correlate to differences in choline intake but were inversely associated with fiber intake (P < 0.05). CONCLUSIONS: These results indicate that lifestyle intervention decreases TMAO levels in children with obesity.


Asunto(s)
Biomarcadores/orina , Metabolómica/métodos , Metilaminas/orina , Obesidad Infantil/terapia , Conducta de Reducción del Riesgo , Niño , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda