RESUMEN
Cancer stem cells (CSCs) are a small population of cells with stem cell-like properties found in tumors. CSCs are closely associated with tumor heterogeneity, which influences tumor progress, metastasis, and drug resistance. Here, we propose a concept to enhance efficacy of cancer therapy through CSC reprogramming into non-tumorigenic cells using stem cell-derived exosomes with osteoinductive potential. We hypothesized that exosomes derived from osteogenic differentiating human adipose-derived stem cells (OD-EXOs) contain specific cargos capable of inducing osteogenic differentiation of CSCs. Quantitative RT-PCR analysis revealed that OD-EXOs enhanced the expression of osteogenic-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription factor 2 (RUNX2). In addition, expression of drug-resistance genes such as ATP binding cassette (ABC) transporter, the breast cancer gene family (BCRA1 and BCRA2), and the ErbB gene family were significantly decreased in OD-EXO-treated CSCs. Our findings suggest that OD-EXOs function as a biochemical cue for CSC reprogramming and contribute to overcoming therapeutic resistance.
Asunto(s)
Reprogramación Celular , Exosomas/genética , Neoplasias/terapia , Células Madre Neoplásicas/citología , Osteogénesis , Línea Celular Tumoral , Técnicas de Reprogramación Celular/métodos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patologíaRESUMEN
Prenatal stress during pregnancy leads to sex-specific effects on fetal development and disease susceptibility over the life span; however, the origin of sex differences has not been identified. The placenta not only plays a key role in fetal growth and development throughout pregnancy, but also affects the fetal programming underlying subsequent adult health and accounts. Therefore, sex-specific adaptation of the placenta may be central to the sex differences in fetal growth and survival. Here, we analyzed the effects of prenatal dexamethasone (Dex) on sex-specific changes in placental gene expression using RNA-Seq. Placental tissues from males and females were separated into two developmentally distinct fetal and maternal parts at E11.5 stage. The majority of genes in female placentas were downregulated by prenatal Dex, whereas those were mostly maintained or rather upregulated in male placentas. RNA-Seq results were validated using independent biological replicates from the same stage and placental tissue samples from E18.5 by realtime PCR assays. Activation of various inflammatory response-related genes, chemokines and their receptors, particularly in male placentas, strongly implies that prenatal Dex exposure causes sex-specific physiological responses that can lead to inflammatory diseases involving vascular pathology.
Asunto(s)
Dexametasona/farmacología , Placenta/efectos de los fármacos , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Femenino , Ratones , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Caracteres SexualesRESUMEN
Labeling of stem cells aims to distinguish transplanted cells from host cells, understand in vivo fate of transplanted cells, particularly important in stem cell therapy. Adipose-derived mesenchymal stem cells (ASCs) are considered as an emerging therapeutic option for tissue regeneration, but much remains to be understood regarding the in vivo evidence. In this study, a simple and efficient cell labeling method for labeling and tracking of stem cells was developed based on bio-orthogonal copper-free click chemistry, and it was applied in a mouse hindlimb ischemia model. The human ASCs were treated with tetra-acetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) to generate glycoprotein with unnatural azide groups on the cell surface, and the generated azide groups were fluorescently labeled by specific binding of dibenzylcyclooctyne-conjugated Cy5 (DBCO-Cy5). The safe and long-term labeling of the hASCs by this method was first investigated in vitro. Then the DBCO-Cy5-hASCs were transplanted into the hindlimb ischemia mice model, and we could monitor and track in vivo fate of the cells using optical imaging system. We could clearly observe the migration potent of the hASCs toward the ischemic lesion. This approach to design and tailor new method for labeling of stem cells may be useful to provide better understanding on the therapeutic effects of transplanted stem cells into the target diseases.
Asunto(s)
Rastreo Celular/métodos , Isquemia/terapia , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Animales , Azidas/química , Química Clic/métodos , Modelos Animales de Enfermedad , Colorantes Fluorescentes/química , Miembro Posterior , Humanos , Imagenología Tridimensional , Isquemia/patología , Trasplante de Células Madre Mesenquimatosas , RatonesRESUMEN
Establishment of an appropriate cell labeling and tracking method is essential for the development of cell-based therapeutic strategies. Here, we are introducing a new method for cell labeling and tracking by combining metabolic gylcoengineering and bioorthogonal copper-free Click chemistry. First, chondrocytes were treated with tetraacetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz) to generate unnatural azide groups (-N3) on the surface of the cells. Subsequently, the unnatural azide groups on the cell surface were specifically conjugated with near-infrared fluorescent (NIRF) dye-tagged dibenzyl cyclooctyne (DBCO-650) through bioorthogonal copper-free Click chemistry. Importantly, DBCO-650-labeled chondrocytes presented strong NIRF signals with relatively low cytotoxicity and the amounts of azide groups and DBCO-650 could be easily controlled by feeding different amounts of Ac4ManNAz and DBCO-650 to the cell culture system. For the in vivo cell tracking, DBCO-650-labeled chondrocytes (1 × 10(6) cells) seeded on the 3D scaffold were subcutaneously implanted into mice and the transplanted DBCO-650-labeled chondrocytes could be effectively tracked in the prolonged time period of 4 weeks using NIRF imaging technology. Furthermore, this new cell labeling and tracking technology had minimal effect on cartilage formation in vivo.
Asunto(s)
Cartílago/citología , Condrocitos/citología , Química Clic , Cobre/química , Animales , Citometría de Flujo , Ratones , Ingeniería de TejidosRESUMEN
Extracellular matrix (ECM) provides structural support and biochemical cues for tissue development and regeneration. Here we report a thermosensitive hydrogel composed of soluble ECM (sECM) and methylcellulose (MC) for injectable stem cell delivery. The sECM was prepared by denaturing solid ECM extracted from human adipose tissue and then blended with a MC solution. At low temperatures, the sECM-MC solution displayed a viscous solution state in which the loss modulus (Gâ³) was predominant over the storage modulus (G'). With increasing temperature, G' increased dramatically and eventually exceeded Gâ³ around 34 °C, characteristic of the transition from a liquid-like state to an elastic gel-like state. After a single injection of the stem cell-embedded hydrogel in full thickness cutaneous wound, the wound healed rapidly through re-epithelialization and neovascularization with minimum scar formation. The overall results suggest that in-situ-forming sECM-MC hydrogels are a promising injectable vehicle for stem cell delivery and tissue regeneration.
Asunto(s)
Matriz Extracelular/química , Hidrogeles/química , Hidrogeles/farmacología , Metilcelulosa/química , Piel/efectos de los fármacos , Células Madre/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Células Cultivadas , Humanos , Inyecciones/métodos , Regeneración/efectos de los fármacos , TemperaturaRESUMEN
Systemic sclerosis is an autoimmune disease characterized by inflammatory reactions and fibrosis. Myofibroblasts are considered therapeutic targets for preventing and reversing the pathogenesis of fibrosis in systemic sclerosis. Although the mechanisms that differentiate into myofibroblasts are diverse, transforming growth factor ß (TGF-ß) is known to be a key mediator of fibrosis in systemic sclerosis. This study investigated the effects of extracellular vesicles derived from human adipose stem cells (ASC-EVs) in an in vivo systemic sclerosis model and in vitro TGF-ß1-induced dermal fibroblasts. The therapeutic effects of ASC-EVs on the in vivo systemic sclerosis model were evaluated based on dermal thickness and the number of α-smooth muscle actin (α-SMA)-expressing cells using hematoxylin and eosin staining and immunohistochemistry. Administration of ASC-EVs decreased both the dermal thickness and α-SMA expressing cell number as well as the mRNA levels of fibrotic genes, such as Acta2, Ccn2, Col1a1 and Comp. Additionally, we discovered that ASC-EVs can decrease the expression of α-SMA and CTGF and suppress the TGF-ß pathway by inhibiting the activation of SMAD2 in dermal fibroblasts induced by TGF-ß1. Finally, TGF-ß1-induced dermal fibroblasts underwent selective death through ASC-EVs treatment. These results indicate that ASC-EVs could provide a therapeutic approach for preventing and reversing systemic sclerosis.
RESUMEN
Despite the remarkable advances of dermal fillers that reduce wrinkles caused by dermis thickness reduction, they still lack effective hydrogel systems that stimulate collagen generation along with injection convenience. Here, we develop a stem cell-derived extracellular vesicle (EV)-bearing thermosensitive hydrogel (EVTS-Gel) for effective in vivo collagen generation. The TS-Gel undergoes sol-gel transition at 32.6 °C, as demonstrated by the storage and loss moduli crossover. Moreover, the TS-Gel and the EVTS-Gel have comparable rheological properties. Both hydrogels are injected in a sol state; hence, they require lower injection forces than conventional hydrogel-based dermal fillers. When locally administered to mouse skin, the TS-Gel extends the retention time of EVs by 2.23 times. Based on the nature of the controlled EV release, the EVTS-Gel significantly inhibits the dermis thickness reduction caused by aging compared to the bare EV treatment for 24 weeks. After a single treatment, the collagen layer thickness of the EVTS-Gel-treated dermis becomes 2.64-fold thicker than that of the bare EV-treated dermis. Notably, the collagen generation efficacy of the bare EV is poorer than that of the EVTS-Gel of a 10× lesser dose. Overall, the EVTS-Gel shows potential as an antiaging dermal filler for in vivo collagen generation.
Asunto(s)
Colágeno , Dermis , Vesículas Extracelulares , Hidrogeles , Animales , Ratones , Dermis/metabolismo , Dermis/efectos de los fármacos , Colágeno/química , Hidrogeles/química , Hidrogeles/farmacología , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Rellenos Dérmicos/química , Rellenos Dérmicos/farmacologíaRESUMEN
Effective intracellular delivery of therapeutic proteins can potentially treat a wide array of diseases. However, efficient delivery of functional proteins across the cell membrane remains challenging. Exosomes are nanosized vesicles naturally secreted by various types of cells and may serve as promising nanocarriers for therapeutic biomolecules. Here, we engineered exosomes equipped with a photoinducible cargo protein release system, termed mMaple3-mediated protein loading into and release from exosome (MAPLEX), in which cargo proteins can be loaded into the exosomes by fusing them with photocleavable protein (mMaple3)-conjugated exosomal membrane markers and subsequently released from the exosomal membrane by inducing photocleavage with blue light illumination. Using this system, we first induced transcriptional regulation by delivering octamer-binding transcription factor 4 and SRY-box transcription factor 2 to fibroblasts in vitro. Second, we induced in vivo gene recombination in Cre reporter mice by delivering Cre recombinase. Last, we achieved targeted epigenome editing in the brains of 5xFAD and 3xTg-AD mice, two models of Alzheimer's disease. Administration of MAPLEXs loaded with ß-site amyloid precursor protein cleaving enzyme 1 (Bace1)-targeting single guide RNA-incorporated dCas9 ribonucleoprotein complexes, coupled with the catalytic domain of DNA methyltransferase 3A, resulted in successful methylation of the targeted CpG sites within the Bace1 promoter. This approach led to a significant reduction in Bace1 expression, improved recognition memory impairment, and reduced amyloid pathology in 5xFAD and 3xTg-AD mice. These results suggest that MAPLEX is an efficient intracellular protein delivery system that can deliver diverse therapeutic proteins for multiple diseases.
Asunto(s)
Enfermedad de Alzheimer , Sistemas CRISPR-Cas , Exosomas , Edición Génica , Exosomas/metabolismo , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Humanos , Ratones , Epigénesis Genética , Sistemas de Liberación de Medicamentos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Integrasas/metabolismoRESUMEN
Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment. The ECM sheets exhibited good mechanical properties, despite their porous structure. They degraded quickly in the presence of collagenase and the degradation rate increased with the collagenase concentration in phosphate-buffered saline. Five different human cell types, covering a broad range of cells and applications (normal human dermal fibroblasts, human aortic smooth muscle cells, human chondrocytes, human umbilical vein endothelial cells and human adipose-derived stem cells), were seeded onto the ECM sheets. All the human cell types spread well, proliferated and were successfully integrated into the decellularized ECM sheet. Overall, the results suggest that recellularized ECM sheets are a promising substitute for defective or damaged human tissues.
Asunto(s)
Tejido Adiposo/citología , Matriz Extracelular/metabolismo , Ingeniería de Tejidos/métodos , Adulto , Aorta/citología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Dermis/citología , Matriz Extracelular/ultraestructura , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Indoles/metabolismo , Microscopía Fluorescente , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Porosidad/efectos de los fármacos , Dodecil Sulfato de Sodio/farmacología , Coloración y Etiquetado , Células Madre/citología , Células Madre/efectos de los fármacos , Estrés Mecánico , Resistencia a la Tracción/efectos de los fármacos , Adulto JovenRESUMEN
Hyaluronic acid-based hydrogels (Hyal-Gels) have the potential to reduce wrinkles by physically volumizing the skin. However, they have limited ability to stimulate collagen generation, thus warranting repeated treatments to maintain their volumizing effect. In this study, stem cell-derived extracellular vesicle (EV)-bearing Hyal-Gels (EVHyal-Gels) were prepared as a potential dermal filler, ameliorating the dermis microenvironment. No significant differences were observed in rheological properties and injection force between Hyal-Gels and EVHyal-Gels. When locally administered to mouse skin, Hyal-Gels significantly extended the biological half-life of EVs from 1.37 d to 3.75 d. In the dermis region, EVHyal-Gels induced the overexpression of CD301b on macrophages, resulting in enhanced proliferation of fibroblasts. It was found that miRNAs, such as let-7b-5p and miR-24-3p, were significantly involved in the change of macrophages toward the CD301bhi phenotype. The area of the collagen layer in EVHyal-Gel-treated dermis was 2.4-fold higher than that in Hyal-Gel-treated dermis 4 weeks after a single treatment, and the collagen generated by EVHyal-Gels was maintained for 24 weeks in the dermis. Overall, EVHyal-Gels have the potential as an antiaging dermal filler for reprogramming the dermis microenvironment.
Asunto(s)
Rellenos Dérmicos , Vesículas Extracelulares , Ratones , Animales , Rellenos Dérmicos/farmacología , Dermis , Ácido Hialurónico/farmacología , Fibroblastos , Colágeno/farmacología , Hidrogeles/farmacología , Células Madre , MacrófagosRESUMEN
BACKGROUND: Corticosterone (CORT) can induce neuronal damage in various brain regions, including the cerebral cortex, the region implicated in depression. However, the underlying mechanisms of these CORT-induced effects remain poorly understood. Recently, many studies have suggested that adipose stem cell-derived extracellular vesicles (A-EVs) protect neurons in the brain. METHODS: To investigated neuroprotection effects of A-EVs in the CORT-induced cortical neurons, we cultured cortical neurons from E15 mice for 7 days, and the cultured cortical neurons were pretreated with different numbers (5 × 105-107 per mL) of A-EVs (A-EVs5, A-EVs6, A-EVs7) for 30 min followed by administration of 200 µM CORT for 24 h. RESULTS: Here, we show that A-EVs exert antiapoptotic effects by inhibiting endoplasmic reticulum (ER) stress in CORT-induced cortical neurons. We found that A-EVs prevented neuronal cell death induced by CORT in cultured cortical neurons. More importantly, we found that CORT exposure in cortical neurons resulted in increased levels of apoptosis-related proteins such as cleaved caspase-3. However, pretreatment with A-EVs rescued the levels of caspase-3. Intriguingly, CORT-induced apoptosis involved upstream activation of ER stress proteins such as GRP78, CHOP and ATF4. However, pretreatment with A-EVs inhibited ER stress-related protein expression. CONCLUSION: Our findings reveal that A-EVs exert antiapoptotic effects via inhibition of ER stress in CORT-induced cell death.
Asunto(s)
Corticosterona , Vesículas Extracelulares , Animales , Apoptosis , Corteza Cerebral , Corticosterona/metabolismo , Corticosterona/toxicidad , Vesículas Extracelulares/metabolismo , Ratones , Neuronas/metabolismo , Células MadreRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is mediated by the interaction of the viral spike (S) protein with angiotensin-converting enzyme 2 (ACE2) on the host cell surface. Although a clinical trial testing soluble ACE2 (sACE2) for COVID-19 is currently ongoing, our understanding of the delivery of sACE2 via small extracellular vesicles (sEVs) is still rudimentary. With excellent biocompatibility allowing for the effective delivery of molecular cargos, sEVs are broadly studied as nanoscale protein carriers. In order to exploit the potential of sEVs, we design truncated CD9 scaffolds to display sACE2 on the sEV surface as a decoy receptor for the S protein of SARS-CoV-2. Moreover, to enhance the sACE2-S binding interaction, we employ sACE2 variants. sACE2-loaded sEVs exhibit typical sEVs characteristics and bind to the S protein. Furthermore, engineered sEVs inhibit the entry of wild-type (WT), the globally dominant D614G variant, Beta (K417N-E484K-N501Y) variant, and Delta (L452R-T478K-D614G) variant SARS-CoV-2 pseudovirus, and protect against authentic SARS-CoV-2 and Delta variant infection. Of note, sACE2 variants harbouring sEVs show superior antiviral efficacy than WT sACE2 loaded sEVs. Therapeutic efficacy of the engineered sEVs against SARS-CoV-2 challenge was confirmed using K18-hACE2 mice. The current findings provide opportunities for the development of new sEVs-based antiviral therapeutics.
Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , Vesículas Extracelulares/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de ProteínasRESUMEN
Stem cell therapy requires large numbers of stem cells to replace damaged tissues, but only limited numbers of stem cells can be harvested from a single patient. To obtain large quantities of stem cells with differentiation potential, we explored a spinner culture system using human extracellular matrix (hECM) powders. The hECM was extracted from adipose tissue and fabricated into powders. Human adipose-derived stem cells (hASCs) were isolated, seeded on hECM powders, and cultivated in a spinner flask. The 3-D culture system, using hECM powders, was highly effective for promoting cell proliferation. The number of hASCs in the 3-D culture system significantly increased for 10 days, resulting in an approximately 10-fold expansion, whereas a traditional 2-D culture system showed just a 2.8-fold expansion. Surface markers, transcriptional factors, and differentiation potential of hASCs were assayed to identify the characteristics of proliferated cells in 3-D culture system. The hASCs expressed the pluripotency markers, Oct-4 and Sox-2 during 3-D culture and retained their capacity to differentiate into adipogenic, osteogenic, and chondrogenic lineages. These findings demonstrate that the 3-D culture systems using hECM powders provide an efficient in vitro environment for stem cell proliferation, and could act as stem cell delivery carriers for autologous tissue engineering and cell therapy.
Asunto(s)
Tejido Adiposo/citología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Células Madre/citología , Adulto , Adhesión Celular , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular , Matriz Extracelular/ultraestructura , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Células Madre Pluripotentes/citología , Polvos , Células Madre/ultraestructura , Adulto JovenRESUMEN
BACKGROUND: Extracellular vesicles (EVs) derived from plants have emerged as potential candidates for cosmetic and therapeutic applications. In this study, we isolated EVs from Aloe vera peels (A-EVs) and investigated the antioxidant and wound healing potential of A-EVs. METHODS: A-EVs were isolated by ultracentrifugation and tangential flow filtration and were characterized using transmission electron microscopy, nanoparticle tracking analysis. The cytotoxicity and cellular uptake of A-EVs were investigated by WST-1 assay and flow cytometry. The antioxidant effect of A-EVs was evaluated by superoxide dismutase (SOD) activity assay and cellular antioxidant activity (CAA) assay. The wound healing potential was assessed by in vitro scratch assay using human keratinocytes (HaCaT) and fibroblasts (HDF). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and their associated genes was analyzed by quantitative RT-PCR. RESULTS: A-EVs displayed a round shape and had diameters from 50 to 200 nm. A-EVs showed good cytocompatibility on human skin cells and were internalized into HaCaT cells via clathrin-, caveolae-mediated endocytosis, and membrane fusion. The SOD activity and CAA assays exhibited that A-EVs had antioxidant activity and reduced intracellular ROS levels in H2O2-treated HaCaT cells in a dose-dependent manner. A scratch assay showed that A-EVs enhanced the migration ability of HaCaT and HDF. Moreover, A-EVs significantly upregulated the mRNA expression of Nrf2, HO-1, CAT, and SOD genes in H2O2-treated HaCaT cells. Our findings reveal that A-EVs could activate the antioxidant defense mechanisms and wound healing process via the Nrf2 activation. CONCLUSION: Overall results suggest that the A-EVs are promising as a potential agent for skin regeneration.
Asunto(s)
Aloe , Vesículas Extracelulares , Antioxidantes/farmacología , Peróxido de Hidrógeno , Cicatrización de HeridasRESUMEN
Despite the remarkable advances in therapeutics for rheumatoid arthritis (RA), a large number of patients still lack effective countermeasures. Recently, the reprogramming of macrophages to an immunoregulatory phenotype has emerged as a promising therapeutic strategy for RA. Here, we report metabolically engineered exosomes that have been surface-modified for the targeted reprogramming of macrophages. Qualified exosomes were readily harvested from metabolically engineered stem cells by tangential flow filtration at a high yield while maintaining their innate immunomodulatory components. When systemically administered into mice with collagen-induced arthritis, these exosomes effectively accumulated in the inflamed joints, inducing a cascade of anti-inflammatory events via macrophage phenotype regulation. The level of therapeutic efficacy obtained with bare exosomes was achievable with the engineered exosomes of 10 times less dose. On the basis of the boosted nature to reprogram the synovial microenvironment, the engineered exosomes display considerable potential to be developed as a next-generation drug for RA.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Exosomas , Animales , Artritis Experimental/terapia , Artritis Reumatoide/tratamiento farmacológico , Humanos , Macrófagos , Ratones , Células MadreRESUMEN
The biological significance of extracellular vesicles (EVs) as intercellular communication mediators has been increasingly revealed in a wide range of normal physiological processes and disease pathogenesis. In particular, regenerative and immunomodulatory EVs hold potential as innate biotherapeutics, whereas pathological EVs are considered therapeutic targets for inhibiting their bioactivity. Given their ability to transport functional cargos originating from the source cells to target cells, EVs can also be used as a therapeutic means to deliver drug molecules. This review aims to provide an updated overview of the key engineering approaches for better exploiting EVs in disease intervention. The emphasis is lying on the preconditioning methods for therapeutic EVs, drug loading and targeting technologies for carrier EVs, and activity control strategies for pathological EVs.
Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Sistemas de Liberación de MedicamentosRESUMEN
Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs. No significant differences were found in the particle size and morphology between bare and V-EVs. In addition, surface engineering of EVs did not affect the expression of surface marker proteins (e.g., CD63 and CD9), as demonstrated by flow cytometry. Owing to the surface incorporation of vitamin A, V-EVs were selectively taken up by activated HSCs via receptor-mediated endocytosis. When systemically administered to mice with liver fibrosis, V-EVs effectively targeted activated HSCs in the liver tissue, resulting in reversal of the fibrotic cascade. Consequently, even at a 10-fold lower dose, V-EVs exhibited comparable anti-fibrotic effects to those of bare EVs, substantiating their therapeutic potential for liver fibrosis.
Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Células Estrelladas Hepáticas , Cirrosis Hepática/tratamiento farmacológico , Ratones , Vitamina ARESUMEN
Osteoporosis is one of the most common skeletal disorders caused by the imbalance between bone formation and resorption, resulting in quantitative loss of bone tissue. Since stem cell-derived extracellular vesicles (EVs) are growing attention as novel cell-free therapeutics that have advantages over parental stem cells, the therapeutic effects of EVs from adipose tissue-derived stem cells (ASC-EVs) on osteoporosis pathogenesis were investigated. ASC-EVs were isolated by a multi-filtration system based on the tangential flow filtration (TFF) system and characterized using transmission electron microscopy, dynamic light scattering, zeta potential, flow cytometry, cytokine arrays, and enzyme-linked immunosorbent assay. EVs are rich in growth factors and cytokines related to bone metabolism and mesenchymal stem cell (MSC) migration. In particular, osteoprotegerin (OPG), a natural inhibitor of receptor activator of nuclear factor-κB ligand (RANKL), was highly enriched in ASC-EVs. We found that the intravenous administration of ASC-EVs attenuated bone loss in osteoporosis mice. Also, ASC-EVs significantly inhibited osteoclast differentiation of macrophages and promoted the migration of bone marrow-derived MSCs (BM-MSCs). However, OPG-depleted ASC-EVs did not show anti-osteoclastogenesis effects, demonstrating that OPG is critical for the therapeutic effects of ASC-EVs. Additionally, small RNA sequencing data were analysed to identify miRNA candidates related to anti-osteoporosis effects. miR-21-5p in ASC-EVs inhibited osteoclast differentiation through Acvr2a down-regulation. Also, let-7b-5p in ASC-EVs significantly reduced the expression of genes related to osteoclastogenesis. Finally, ASC-EVs reached the bone tissue after they were injected intravenously, and they remained longer. OPG, miR-21-5p, and let-7b-5p in ASC-EVs inhibit osteoclast differentiation and reduce gene expression related to bone resorption, suggesting that ASC-EVs are highly promising as cell-free therapeutic agents for osteoporosis treatment.
Asunto(s)
Tejido Adiposo/metabolismo , Vesículas Extracelulares/metabolismo , Osteoporosis/terapia , Osteoprotegerina/genética , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Osteoporosis/patologíaRESUMEN
Extracellular vesicles (EVs) are essential mediators in intercellular communication that have emerged as natural therapeutic nanomedicines for the treatment of intractable diseases. Their therapeutic applications, however, have been limited by unpredictable in vivo biodistribution after systemic administration. To control the in vivo fate of EVs, their surfaces should be properly edited, depending on the target site of action. Herein, based on bioorthogonal copper-free click chemistry (BCC), surface-edited EVs were prepared by using metabolically glycoengineered cells. First, the exogenous azide group was generated on the cellular surface through metabolic glycoengineering (MGE) using the precursor. Next, PEGylated hyaluronic acid, capable of binding specifically to the CD44-expressing cells, was labelled as the representative targeting moiety onto the cell surface by BCC. The surface-edited EVs effectively accumulated into the target tissues of the animal models with rheumatoid arthritis and tumour, primarily owing to prolonged circulation in the bloodstream and the active targeting mechanism. Overall, these results suggest that BCC combined with MGE is highly useful as a simple and safe approach for the surface modification of EVs to modulate their in vivo fate.
Asunto(s)
Vesículas Extracelulares/metabolismo , Receptores de Hialuranos/metabolismo , Inflamación/terapia , Animales , Ingeniería Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Células 3T3 NIH , Células RAW 264.7RESUMEN
We developed microfluidic-based pure chitosan microfibers (approximately 1 meter long, 70-150 microm diameter) for liver tissue engineering applications. Despite the potential of the chitosan for creating bio-artificial liver chips, its major limitation is the inability to fabricate pure chitosan-based microstructures with controlled shapes because of the mechanical weakness of the pure chitosan. Previous studies have shown that chitosan micro/nanofibers can be fabricated by using chemicals and electrospinning techniques. However, there is no paper regarding pure chitosan-based microfibers in a microfluidic device. This paper suggests a unique method to fabricate pure chitosan microfibers without any chemical additive. We also analyzed the chemical, mechanical, and diffusion properties of pure chitosan microfibers. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrometry and electron spectroscopy for chemical analysis (ESCA) were used to analyze the chemical composition of the synthesized chitosan microfibers. We measured the mechanical axial-force and diffusion coefficient in pure chitosan-based microfibers using fluorescence recovery after photobleaching (FRAP) techniques. Furthermore, to evaluate the capability of the microfibers for liver tissue formation, hepatoma HepG2 cells were seeded onto the chitosan microfibers. The functionality of these hepatic cells cultured on chitosan microfibers was analyzed by measuring albumin secretion and urea synthesis. Therefore, this pure chitosan-based microfiber chip could be a potentially useful method for liver tissue engineering applications.