Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Anal Chem ; 96(29): 11690-11698, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38991018

RESUMEN

Recent advances in single-cell proteomics have solved many bottlenecks, such as throughput, sample recovery, and scalability via nanoscale sample handling. In this study, we aimed for a sensitive mass spectrometry (MS) analysis capable of handling single cells with a conventional mass spectrometry workflow without additional equipment. We achieved seamless cell lysis and TMT labeling in a micro-HOLe Disc (microHOLD) by developing a mass-compatible single solution based on a zwitterionic detergent and a catalyst for single-cell lysis and tandem mass tag labeling without a heat incubation step. This method was developed to avoid peptide loss by surface adsorption and buffer or tube changes by collecting tandem mass tag-labeled peptide through microholes placed in the liquid chromatography injection vials in a single solution. We successfully applied the microHOLD single-cell proteomics method for the analysis of proteome reprogramming in hormone-sensitive prostate cells to develop castration-resistant prostate cancer cells. This novel single-cell proteomics method is not limited by cutting-edge nanovolume handling equipment and achieves high throughput and ultrasensitive proteomics analysis of limited samples, such as single cells.


Asunto(s)
Detergentes , Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Humanos , Detergentes/química , Catálisis , Línea Celular Tumoral , Espectrometría de Masas en Tándem
2.
Food Res Int ; 184: 114233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609217

RESUMEN

Meju is essential for making diverse traditional fermented soybean foods in Korea. To understand the changes in carbohydrates during fermentation, we aimed to identify autochthonous microorganisms from spontaneously fermented meju and compare the alterations in monosaccharides and oligosaccharides throughout the fermentation process. Microbial diversity was determined using a metabarcoding approach, and monosaccharide and oligosaccharide profiles were obtained by HPLC-Q-TOF MS and HPLC-MS/MS analyses, respectively. The dominant bacterial genera were Weissella, Lactobacillus, and Leuconostoc, while Mucor was highly abundant in the fungal community. The total monosaccharide content increased from Day 0 to Day 50, with the highest amount being 4.37 mg/g. Oligosaccharide profiling revealed the degradation of soybean dietary fiber during fermentation, and novel oligosaccharide structures were also discovered. Correlation analysis revealed that the fungus Mucor was positively related to pentose-containing oligosaccharides, galactose, and galacturonic acid, indicating that Mucor may degrade soybean dietary fibers such as xylogalacturonan, arabinogalactan, and rhamnogalacturonan. The negative relationships between the abundances of Weissella and oligo- and monosaccharides suggested that the bacteria may utilize saccharides for fermentation. These findings provide insights into the mechanisms underlying carbohydrate degradation and utilization; the key components involved in saccharide transformation that contribute to the characteristics of traditional meju were subsequently identified.


Asunto(s)
Microbiota , Monosacáridos , Glycine max , Fermentación , Espectrometría de Masas en Tándem , Oligosacáridos , Fibras de la Dieta
3.
J Alzheimers Dis ; 99(1): 223-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640153

RESUMEN

Background: We previously demonstrated the validity of a regression model that included ethnicity as a novel predictor for predicting normative brain volumes in old age. The model was optimized using brain volumes measured with a standard tool FreeSurfer. Objective: Here we further verified the prediction model using newly estimated brain volumes from Neuro I, a quantitative brain analysis system developed for Korean populations. Methods: Lobar and subcortical volumes were estimated from MRI images of 1,629 normal Korean and 786 Caucasian subjects (age range 59-89) and were predicted in linear regression from ethnicity, age, sex, intracranial volume, magnetic field strength, and scanner manufacturers. Results: In the regression model predicting the new volumes, ethnicity was again a substantial predictor in most regions. Additionally, the model-based z-scores of regions were calculated for 428 AD patients and the matched controls, and then employed for diagnostic classification. When the AD classifier adopted the z-scores adjusted for ethnicity, the diagnostic accuracy has noticeably improved (AUC = 0.85, ΔAUC = + 0.04, D = 4.10, p < 0.001). Conclusions: Our results suggest that the prediction model remains robust across different measurement tool, and ethnicity significantly contributes to the establishment of norms for brain volumes and the development of a diagnostic system for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/etnología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico , Pueblo Asiatico , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Tamaño de los Órganos , Población Blanca , Pueblos del Este de Asia
4.
Commun Biol ; 7(1): 998, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147805

RESUMEN

Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.


Asunto(s)
Ritmo Circadiano , Núcleo Dorsal del Rafe , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Serotonina , Triptófano Hidroxilasa , Animales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Núcleo Dorsal del Rafe/metabolismo , Serotonina/metabolismo , Serotonina/biosíntesis , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ratones , Masculino , Afecto/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Depresión/metabolismo
5.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688719

RESUMEN

Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.


Asunto(s)
Axones , Calbindina 2 , Giro Dentado , Ratones Endogámicos C57BL , Animales , Masculino , Giro Dentado/citología , Giro Dentado/anatomía & histología , Calbindina 2/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Ratones , Especificidad de la Especie , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda