Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochemistry ; 50(43): 9237-47, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21936507

RESUMEN

The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions. Upon copper challenge, it upregulates the periplasmic protein CopK (8.3 kDa). The function of CopK in the copper resistance response is ill-defined, but CopK demonstrates an intriguing cooperativity: occupation of a high-affinity Cu(I) binding site generates a high-affinity Cu(II) binding site, and the high-affinity Cu(II) binding enhances Cu(I) binding. Native CopK and targeted variants were examined by chromatographic, spectroscopic, and X-ray crystallographic probes. Structures of two distinct forms of Cu(I)Cu(II)-CopK were defined, and structural changes associated with occupation of the Cu(II) site were demonstrated. In solution, monomeric Cu(I)Cu(II)-CopK features the previously elucidated Cu(I) site in Cu(I)-CopK, formed from four S(δ) atoms of Met28, -38, -44, and -54 (site 4S). Binding of Cu(I) to apo-CopK induces a conformational change that releases the C-terminal ß-strand from the ß-sandwich structure. In turn, this allows His70 and N-terminal residues to form a large loop that includes the Cu(II) binding site. In crystals, a polymeric form of Cu(I)Cu(II)-CopK displays a Cu(I) site defined by the S(δ) atoms of Met26, -38, and -54 (site 3S) and an exogenous ligand (modeled as H(2)O) and a Cu(II) site that bridges dimeric CopK molecules. The 3S Cu(I) binding mode observed in crystals was demonstrated in solution in protein variant M44L where site 4S is disabled. The intriguing copper binding chemistry of CopK provides molecular insight into Cu(I) transfer processes. The adaptable nature of the Cu(I) coordination sphere in methionine-rich clusters allows copper to be relayed between clusters during transport across membranes in molecular pumps such as CusA and Ctr1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Cupriavidus/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cobre/química , Cristalografía por Rayos X , Cupriavidus/química , Modelos Moleculares , Unión Proteica , Conformación Proteica
2.
J Am Chem Soc ; 132(6): 2005-15, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20088522

RESUMEN

CueO from Escherichia coli is a multicopper oxidase (MCO) involved in copper tolerance under aerobic conditions. It features four copper atoms that act as electron transfer (T1) and dioxygen reduction (T2, T3; trinuclear) sites. In addition, it displays a methionine-rich insert which includes a helix that blocks physical access to the T1 site and which provides an extra labile site T4 adjacent to the T1 center. This T4 site is required for CueO function. Like many MCOs, CueO exhibits phenol oxidase activity with broad substrate specificity. Maximal activity with model substrate 2,6-dimethoxyphenol required stoichiometric occupation of T4 by Cu(II) (notation: Cu(II)-CueO). This was achieved in Mops buffer which has little affinity for Cu(2+). However, pH buffers that bind or precipitate Cu(2+) (Tris, BisTris, and KPi) generated enzyme with a vacant T4 site (notation: square-CueO) which has no phenol oxidase activity. Addition of excess Cu(2+) effectively generated a Cu(2+) buffer and recovered the activity partially or completely, depending upon the specific pH buffer. This phenomenon allowed reliable estimation of the affinity of T4 for Cu(II): K(D) = 5.5 x 10(-9) M. CueO is involved in copper tolerance and has been suggested to be a cuprous oxidase. The anion [Cu(I)(Bca)(2)](3-) (Bca = bicinchoninate) acted as a novel chromophoric substrate. It is a robust reagent, being air-stable and having a Cu(I) affinity comparable to those of periplasmic Cu(I) binding proteins. The influences of pH buffer composition and of excess Cu(2+) on cuprous oxidation were diametrically opposite to those seen for phenol oxidation, suggesting that square-CueO, not Cu(II)-CueO, is the resting form of the cuprous oxidase. Steady-state kinetics demonstrated that the intact anion [Cu(I)(Bca)(2)](3-), not "free" Cu(+), is the substrate that donates Cu(I) directly to T4. The data did not follow classical Michaelis-Menten kinetics but could be fitted satisfactorily by an extension that considered the effect of free ligand Bca. The K(m) term consists of two components, allowing estimation of the transient affinity of T4 for Cu(I): K(D) = 1.3 x 10(-13) M. It may be concluded that Cu(I) carried by [Cu(I)(Bca)(2)](3-) is oxidized only upon complete transfer of Cu(I) to T4. The transfer is required to induce a negative shift in the copper reduction potential to allow oxidation and electron transfer to the T1 site. The results provide compelling evidence that CueO is a cuprous oxidase. The new approach will have significant application to the study of metallo-oxidase enzymes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxidorreductasas/metabolismo , Tampones (Química) , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Cinética , Metales/metabolismo , Modelos Moleculares , Monofenol Monooxigenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Estructura Terciaria de Proteína , Termodinámica
3.
J Am Chem Soc ; 131(10): 3549-64, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19236095

RESUMEN

The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions, including copper. This ability arises primarily from the presence of a large plasmid pMOL30 which includes a cluster of 19 cop genes that respond to copper. One of the protein products CopK is induced at high levels and is expressed to the periplasm as a small soluble protein (8.3 kDa). Apo-CopK associates in solution to form a dimer (K(D) approximately 10(-5) M) whose structure was defined by NMR and X-ray crystallography. The individual molecules feature two antiparallel beta-sheets arranged in a sandwich-like structure and interact through C-terminal beta-strands. It binds Cu(II) with low affinity (K(D)(Cu(II)) > 10(-6) M) but Cu(I) with high affinity (K(D)(Cu(I)) = 2 x 10(-11) M). Cu(I)-CopK was also a dimer in the solid state and featured a distorted tetrahedral site Cu(I)(S-Met)(3)(NCS). The isothiocyanato ligand originated from the crystallization solution. Binding of Cu(I) or Ag(I), but not of Cu(II), favored the monomeric form in solution. While Ag(I)-CopK was stable as isolated, Cu(I)-CopK was moderately air-sensitive due to a strong binding cooperativity between Cu(I) and Cu(II). This was documented by determination of the Cu(I) and Cu(II) binding affinities in the presence of the other ion: K(D)(Cu(I)) = 2 x 10(-13) M and K(D)(Cu(II)) = 3 x 10(-12) M, that is, binding of Cu(II) increased the affinity for Cu(I) by a factor of approximately 10(2) and binding of Cu(I) increased the affinity for Cu(II) by a factor of at least 10(6). Stable forms of both Cu(I)Cu(II)-CopK and Ag(I)Cu(II)-CopK were isolated readily. Consistent with this unprecedented copper binding chemistry, NMR spectroscopy detected three distinct forms: apo-CopK, Cu(I)-CopK and Cu(I)Cu(II)-CopK that do not exchange on the NMR time scale. This information provides a valuable guide to the role of CopK in copper resistance.


Asunto(s)
Proteínas Bacterianas/química , Cobre/metabolismo , Cristalografía por Rayos X/métodos , Cupriavidus/química , Resonancia Magnética Nuclear Biomolecular/métodos , Secuencia de Aminoácidos , Cobre/química , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda