RESUMEN
The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.
Asunto(s)
Adhesinas Bacterianas/metabolismo , Fibrinolisina/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Plasminógeno/metabolismo , Factores de Virulencia/metabolismo , Células A549 , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Unión Proteica , Virulencia , Factores de Virulencia/genéticaRESUMEN
The human pathogen Mycobacterium tuberculosis (Mtb) harbors a well-orchestrated Clp (caseinolytic protease) proteolytic machinery consisting of two oligomeric segments, a barrel-shaped heterotetradecameric protease core comprising the ClpP1 and ClpP2 subunits, and hexameric ring-like ATP-dependent unfoldases composed of ClpX or ClpC1. The roles of the ClpP1P2 protease subunits are well-established in Mtb, but the potential roles of the associated unfoldases, such as ClpC1, remain elusive. Using a CRISPR interference-mediated gene silencing approach, here we demonstrate that clpC1 is indispensable for the extracellular growth of Mtb and for its survival in macrophages. The results from isobaric tags for relative and absolute quantitation-based quantitative proteomic experiments with clpC1- and clpP2-depleted Mtb cells suggested that the ClpC1P1P2 complex critically maintains the homeostasis of various growth-essential proteins in Mtb, several of which contain intrinsically disordered regions at their termini. We show that the Clp machinery regulates dosage-sensitive proteins such as the small heat shock protein Hsp20, which exists in a dodecameric conformation. Further, we observed that Hsp20 is poorly expressed in WT Mtb and that its expression is greatly induced upon depletion of clpC1 or clpP2 Remarkably, high Hsp20 protein levels were detected in the clpC1(-) or clpP2(-) knockdown strains but not in the parental bacteria, despite significant induction of hsp20 transcripts. In summary, the cellular levels of oligomeric proteins such as Hsp20 are maintained post-translationally through their recognition, disassembly, and degradation by ClpC1, which requires disordered ends in its protein substrates.
Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Proteínas Intrínsecamente Desordenadas/biosíntesis , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/genética , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/genética , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Mycobacterium tuberculosis/genética , Dominios Proteicos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Células THP-1RESUMEN
Comparative phosphoproteomics of Mycobacterium tuberculosis (Mtb)- and Mycobacterium bovis BCG (BCG)-infected macrophages could be instrumental in understanding the characteristic post-translational modifications of host proteins and their subsequent involvement in determining Mtb pathogenesis. To identify proteins acquiring a distinct phosphorylation status, herein, we compared the phosphorylation profile of macrophages upon exposure to Mtb and BCG. We observed a significant dephosphorylation of proteins following Mtb infection relative to those with uninfected or BCG-infected cells. A comprehensive tandem mass tag mass spectrometry (MS) approach detected â¼10% phosphosites on a variety of host proteins that are modulated in response to infection. Interestingly, the innate immune-enhancing interferon (IFN)-stimulated genes were identified as a class of proteins differentially phosphorylated during infection, including the cytosolic RNA sensor RIG-I, which has been implicated in the immune response to bacterial infection. We show that Mtb infection results in the activation of RIG-I in primary human macrophages. Studies using RIG-I knockout macrophages reveal that the Mtb-mediated activation of RIG-I promotes IFN-ß, IL-1α, and IL-1ß levels, dampens autophagy, and facilitates intracellular Mtb survival. To our knowledge, this is the first study providing exhaustive information on relative and quantitative changes in the global phosphoproteome profile of host macrophages that can be further explored in designing novel anti-TB drug targets. The peptide identification and MS/MS spectra have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013171.
Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Humanos , Macrófagos , ARN , Espectrometría de Masas en TándemRESUMEN
Mycobacterium tuberculosis causes tuberculosis in humans and predominantly infects alveolar macrophages. To survive inside host lesions and to evade immune surveillance, this pathogen has developed many strategies. For example, M. tuberculosis uses host-derived lipids/fatty acids as nutrients for prolonged persistence within hypoxic host microenvironments. M. tuberculosis imports these metabolites through its respective transporters, and in the case of host fatty acids, a pertinent question arises: does M. tuberculosis have the enzyme(s) for cleavage of fatty acids from host lipids? We show herein that a previously uncharacterized membrane-associated M. tuberculosis protein encoded by Rv2672 is conserved exclusively in actinomycetes, exhibits both lipase and protease activities, is secreted into macrophages, and catalyzes host lipid hydrolysis. In light of these functions, we annotated Rv2672 as mycobacterial secreted hydrolase 1 (Msh1). Furthermore, we found that this enzyme is up-regulated both in an in vitro model of hypoxic stress and in a mouse model of M. tuberculosis infection, suggesting that the pathogen requires Msh1 under hypoxic conditions. Silencing Msh1 expression compromised the ability of M. tuberculosis to proliferate inside lipid-rich foamy macrophages but not under regular culture conditions in vitro, underscoring Msh1's importance for M. tuberculosis persistence in lipid-rich microenvironments. Of note, this is the first report providing insight into the mechanism of host lipid catabolism by an M. tuberculosis enzyme, augmenting our current understanding of how M. tuberculosis meets its nutrient requirements under hypoxic conditions.
Asunto(s)
Proteínas Bacterianas/metabolismo , Células Espumosas/metabolismo , Células Espumosas/microbiología , Hidrolasas/metabolismo , Mycobacterium tuberculosis/enzimología , Tuberculosis/enzimología , Animales , Hipoxia de la Célula , Células Espumosas/patología , Metabolismo de los Lípidos , Ratones , Mycobacterium tuberculosis/patogenicidad , Células RAW 264.7 , Tuberculosis/genética , Tuberculosis/patologíaRESUMEN
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Virus de la Encefalitis Japonesa (Especie)/fisiología , Metotrimeprazina/farmacología , Metotrimeprazina/uso terapéutico , Enfermedades Neuroinflamatorias , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/patología , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia , Antiinflamatorios/uso terapéuticoRESUMEN
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
RESUMEN
Drug tolerance in mycobacterial pathogens is a global concern. Fluoroquinolone (FQ) treatment is widely used for induction of persisters in bacteria. Although FQs that target DNA gyrase are currently used as second-line anti-tuberculosis (TB) drugs, little is known about their impact on Mycobacterium tuberculosis (Mtb) persister formation. Here we explored the CRISPRi-based genetic repression for better understanding the effect of DNA gyrase depletion on Mtb physiology and response to anti-TB drugs. We find that suppression of DNA gyrase drastically affects intra- and extracellular growth of Mtb. Interestingly, gyrase depletion in Mtb leads to activation of RecA/LexA-mediated SOS response and drug tolerance via induction of persister subpopulation. Chemical inhibition of RecA in gyrase-depleted bacteria results in reversion of persister phenotype and better killing by antibiotics. This study provides evidence that inhibition of SOS response can be advantageous in improving the efficacy of anti-TB drugs and shortening the duration of current TB treatment.
Asunto(s)
Antituberculosos/farmacología , Girasa de ADN/metabolismo , Tolerancia a Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Girasa de ADN/genética , Fluoroquinolonas/farmacología , Regulación de la Expresión Génica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Respuesta SOS en Genética/efectos de los fármacosRESUMEN
Trehalose is a natural glucose-derived disaccharide found in the cell wall of mycobacteria. It enters the mycobacterial cell through a highly specific trehalose transporter system. Subsequently, trehalose is equipped with mycolic acid species and is incorporated into the cell wall as trehalose monomycolate or dimycolate. Here, we investigate the phototoxicity of several photosensitizer trehalose conjugates and take advantage of the promiscuity of the extracellular Ag85 complex, which catalyzes the attachment of mycolic acids to trehalose and its analogues. We find that processing by Ag85 enriches and tethers photosensitizer trehalose conjugates directly into the mycomembrane. Irradiation of the conjugates triggers singlet oxygen formation, killing mycobacterial cells more efficiently, as compared to photosensitizers without trehalose conjugation. The conjugates are potent antimycobacterial agents that are, per se, affected neither by permeability issues nor by detoxification mechanisms via drug efflux. They could serve as interesting scaffolds for photodynamic therapy of mycobacterial infections.
RESUMEN
The preprotein translocase, YidC is an envelope protein which controls respiratory metabolism in Mycobacterium tuberculosis. Previously, we have established that depletion of yidC is deleterious for both extra- and intracellular proliferation of M. tuberculosis; however, it remains unclear how YidC expression is regulated under different growth conditions and whether its altered expression impact mycobacterial physiology. Herein, we show that yidC is expressed as an operon with upstream genes. Interestingly, expression analysis under various stress conditions reveals a distinct paradox in the profile of the yidC mRNA transcripts and the YidC protein. While YidC protein level is moderately elevated upon bacterial exposure to cell surface stresses, the corresponding mRNA transcript levels are significantly repressed under these conditions. In contrast, overexpression of M. tuberculosis yidC under a strong anhydrotetracycline-inducible promoter results in significant induction of YidC protein. Additionally, we also observe that overexpression of M. tuberculosis yidC, and not of its counterpart from fast-growing M. smegmatis, results in altered in vitro growth of bacteria, compromised integrity of bacterial cell envelope and differential expression of a small set of genes including those which are regulated under detergent stress. Overall findings of our study suggest that YidC proteins of slow- and fast-growing mycobacteria are functionally distinct despite exhibiting a great deal of identity.
Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/crecimiento & desarrollo , Transcripción Genética , Tuberculosis/metabolismo , Proteínas Bacterianas/genética , Humanos , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Operón , Regiones Promotoras Genéticas , Estrés Fisiológico , Tuberculosis/microbiologíaRESUMEN
Tremendous amount of physiological and functional complexities acquired through decades of evolutionary pressure makes Mycobacterium tuberculosis (Mtb) one of the most dreadful microorganisms infecting humans from centuries. Astonishing advances in genomics and genome editing tools substantially grew our knowledge about Mtb as an organism but dramatically failed to completely understand it as a pathogen. Though conventional tools based on homologous recombination, antisense, controlled proteolysis, etc. have made important contributions in advancing our understanding of the pathophysiology of Mtb, yet these approaches have not accentuated our exploration of mycobacterium on account of certain technical limitations. In this review article we have compiled various approaches implemented in genome editing of mycobacteria along with the latest adaptation of clustered regularly interspaced short palindromic repeat (CRISPR)-interference (CRISPRi), emphasizing the achievements and challenges associated with these techniques.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Animales , Recombinación Homóloga , HumanosRESUMEN
The YidC-Oxa1-Alb3 preprotein translocases play a vital role in membrane insertion of proteins in eukaryotes and bacteria. In a recent study we observed that Rv3921c, which encodes putative YidC translocase in Mycobacterium tuberculosis (Mtb), is essential for in vitro growth of bacteria. However, the exact function of this particular protein remains to identify in mycobacterial pathogens. By performing a systematic study here we show that YidC of Mtb is an envelope protein, which is required for production of ATP and maintenance of cellular redox balance. Drastic effects of depletion of Rv3921c on the expression of hypoxic genes, ATP synthases, and many proteins of central metabolic and respiratory pathways shed a significant light on the function of YidC towards controlling respiratory metabolism in Mtb. Association of YidC with proteins such as succinate dehydrogenases and ubiquinol-cytochrome C reductase further confirms its role in respiration. Finally we demonstrate that YidC is required for the intracellular survival of Mtb in human macrophages.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Canales de Translocación SEC/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Viabilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Oxidación-Reducción , Proteína SecARESUMEN
Recombination-based tools for introducing targeted genomic mutations in Mycobacterium tuberculosis are not efficient due to higher rate of illegitimate recombination compared with homologous DNA exchange. Moreover, involvement of multiple steps and specialized reagents make these tools cost ineffective. Here we introduce a novel clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) approach that efficiently represses expression of target genes in mycobacteria. CRISPRi system involves co-expression of the catalytically dead form of RNA-guided DNA endonuclease from the type II CRISPR system known as dCas9 and the small guide RNA specific to a target sequence, resulting in the DNA recognition complex that interferes with the transcription of corresponding DNA sequence. We show that co-expression of the codon-optimized dCas9 of S. pyogenes with sequence-specific guide RNA results in complete repression of individual or multiple targets in mycobacteria. CRISPRi thus offers a simple, rapid and cost-effective tool for selective control of gene expression in mycobacteria.
Asunto(s)
Sistemas CRISPR-Cas , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Operón , PlásmidosRESUMEN
Mycobacterium tuberculosis (Mtb) secretes excess of a second messenger molecule, 3',5'-cyclic AMP (cAMP), which plays a critical role in the survival of Mtb in host macrophages. Although Mtb produces cAMP in abundance, its exact role in the physiology of mycobacteria is elusive. In this study we have analyzed the expression of 16 adenylate cyclases (ACs) and kinetics of intracellular cAMP levels in Mtb during in vitro growth under the regular culture conditions, and after exposure to different stress agents. We observed a distinct expression pattern of these ACs which is correlated with intracellular cAMP levels. Interestingly cAMP levels are significantly elevated in Mtb following heat stress, whereas other stress conditions such as oxidative, nitrosative or low pH do not affect intracellular cAMP pool in vitro. A significant increase in expression by >2-fold of five ACs namely Rv1647, Rv2212, Rv1625c, Rv2488c and Rv0386 after heat stress further suggested that cAMP plays an important role in controlling Mtb response to heat stress. In the light of these observations, effect of exogenous cAMP on global gene expression profile was examined by using microarrays. The microarray gene expression analysis demonstrated that cAMP regulates expression of a subset of heat stress-induced genes comprising of dnaK, grpE, dnaJ, and Rv2025c. Further we performed electrophoretic mobility shift assay by using cAMP-receptor protein of Mtb (CRP(M)), which demonstrated that CRP(M) specifically recognizes a sequence -301AGCGACCGTCAGCACG-286 in 5'-untranslated region of dnaK.