Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Am J Hum Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.

2.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37827158

RESUMEN

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Asunto(s)
Anomalías Congénitas , Discapacidades del Desarrollo , N-Metiltransferasa de Histona-Lisina , Humanos , Mutación con Ganancia de Función , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilación , Metiltransferasas/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Discapacidades del Desarrollo/genética , Anomalías Congénitas/genética
3.
Hum Mol Genet ; 32(9): 1429-1438, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440975

RESUMEN

Pathogenic variants in ANKRD11 or microdeletions at 16q24.3 are the cause of KBG syndrome (KBGS), a neurodevelopmental syndrome characterized by intellectual disability, dental and skeletal anomalies, and characteristic facies. The ANKRD11 gene encodes the ankyrin repeat-containing protein 11A transcriptional regulator, which is expressed in the brain and implicated in neural development. Syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show unique patterns of DNA methylation (DNAm) in peripheral blood, termed DNAm signatures. Given ANKRD11's role in chromatin modification, we tested whether pathogenic ANKRD11 variants underlying KBGS are associated with a DNAm signature. We profiled whole-blood DNAm in 21 individuals with ANKRD11 variants, 2 individuals with microdeletions at 16q24.3 and 28 typically developing individuals, using Illumina's Infinium EPIC array. We identified 95 differentially methylated CpG sites that distinguished individuals with KBGS and pathogenic variants in ANKRD11 (n = 14) from typically developing controls (n = 28). This DNAm signature was then validated in an independent cohort of seven individuals with KBGS and pathogenic ANKRD11 variants. We generated a machine learning model from the KBGS DNAm signature and classified the DNAm profiles of four individuals with variants of uncertain significance (VUS) in ANKRD11. We identified an intermediate classification score for an inherited missense variant transmitted from a clinically unaffected mother to her affected child. In conclusion, we show that the DNAm profiles of two individuals with 16q24.3 microdeletions were indistinguishable from the DNAm profiles of individuals with pathogenic variants in ANKRD11, and we demonstrate the diagnostic utility of the new KBGS signature by classifying the DNAm profiles of individuals with VUS in ANKRD11.


Asunto(s)
Anomalías Múltiples , Proteínas Represoras , Niño , Femenino , Humanos , Anomalías Múltiples/sangre , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/sangre , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Metilación de ADN/genética , Epigénesis Genética/genética , Facies , Discapacidad Intelectual/sangre , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Aprendizaje Automático , Mutación , Fenotipo , Proteínas Represoras/genética , Anomalías Dentarias/sangre , Anomalías Dentarias/diagnóstico , Anomalías Dentarias/genética , Factores de Transcripción/genética
4.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36130591

RESUMEN

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Anomalías Múltiples , Cromatina , Metilación de ADN/genética , Epigénesis Genética , Cara/anomalías , Enfermedades Hematológicas , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Discapacidad Intelectual/genética , Fenotipo , Enfermedades Vestibulares
5.
Am J Hum Genet ; 108(8): 1359-1366, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297908

RESUMEN

DNA methylation (DNAm) signatures are unique patterns of DNAm alterations defined for rare disorders caused by pathogenic variants in epigenetic regulatory genes. The potential of DNAm signatures (also known as "episignatures") is just beginning to emerge as there are >300 known epigenetic regulatory genes, ∼100 of which are linked to neurodevelopmental disorders. To date, approximately 50 signatures have been identified, which have proven unexpectedly successful as predictive tools for classifying variants of uncertain significance as pathogenic or benign. The molecular basis of these signatures is poorly understood. Furthermore, their relationships to primary disease pathophysiology have yet to be adequately investigated, despite clear demonstrations of potential connections. There are currently no published guidelines for signature development. As signatures are highly dependent on the samples and methods used to derive them, we propose a framework for consideration in signature development including sample size, statistical parameters, cell type of origin, and the value of detailed clinical and molecular information. We illustrate the relationship between signature output/efficacy and sample size by generating and testing 837 DNAm signatures of Kleefstra syndrome using downsampling analysis. Our findings highlight that no single DNAm signature encompasses all DNAm alterations present in a rare disorder, and that a substandard study design can generate a DNAm signature that misclassifies variants. Finally, we discuss the importance of further investigating DNAm signatures to inform disease pathophysiology and broaden their scope as a functional assay.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Mutación , Trastornos del Neurodesarrollo/patología , Animales , Humanos , Trastornos del Neurodesarrollo/genética
6.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909990

RESUMEN

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/patología , Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/patología , Metilación de ADN , Epigénesis Genética , Trastornos del Crecimiento/patología , Defectos del Tabique Interventricular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Anomalías Múltiples/genética , Estudios de Casos y Controles , Estudios de Cohortes , Anomalías Craneofaciales/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Humanos , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/genética
7.
Hum Genet ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022461

RESUMEN

Pathogenic variants in genes that encode epigenetic regulators are the cause for more than 100 rare neurodevelopmental syndromes also termed "chromatinopathies". DNA methylation signatures, syndrome-specific patterns of DNA methylation alterations, serve as both a research avenue for elucidating disease pathophysiology and a clinical diagnostic tool. The latter is well established, especially for the classification of variants of uncertain significance (VUS). In this perspective, we describe the seminal DNA methylation signature research in chromatinopathies; the complex relationships between genotype, phenotype and DNA methylation, and the future applications of DNA methylation signatures.

8.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243864

RESUMEN

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Mutación , Complejo Represivo Polycomb 2/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Mosaicismo , Mutación Missense/genética , Proteínas de Neoplasias , Reproducibilidad de los Resultados , Factores de Transcripción , Adulto Joven
9.
Am J Med Genet A ; 191(10): 2640-2646, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37340855

RESUMEN

Floating-Harbor syndrome (FLHS) is a neurodevelopmental disorder (NDD) caused by truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein gene (SRCAP). Truncating variants proximal to this location in SRCAP result in a non-FLHS SRCAP-associated NDD; an overlapping but distinct NDD characterized by developmental delay with or without intellectual disability (ID), hypotonia, normal stature, and behavioral and psychiatric issues. Here, we report a young woman who initially presented in childhood with significant delays in speech and mild ID. In young adulthood, she developed schizophrenia. On physical examination, she had facial features suggestive of 22q11 deletion syndrome. After non-diagnostic chromosomal microarray and trio exome sequencing (ES), a re-analysis of trio ES data identified a de novo missense variant in SRCAP that was proximal to the FLHS critical region. Subsequent DNA methylation studies showed the unique methylation signature associated with pathogenic sequence variants in non-FLHS SRCAP-related NDD. This clinical report describes an individual with non-FLHS SRCAP-related NDD caused by an SRCAP missense variant, and it also demonstrates the clinical utility of ES re-analysis and DNA methylation analysis for undiagnosed patients, in particular, those with variants of uncertain significance.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Femenino , Humanos , Adulto Joven , Anomalías Múltiples/genética , Adenosina Trifosfatasas/genética , Metilación de ADN , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética
10.
Am J Med Genet A ; 188(5): 1368-1375, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35043535

RESUMEN

Kabuki syndrome (KS) is a neurodevelopmental disorder characterized by hypotonia, intellectual disability, skeletal anomalies, and postnatal growth restriction. The characteristic facial appearance is not pathognomonic for KS as several other conditions demonstrate overlapping features. For 20-30% of children with a clinical diagnosis of KS, no causal variant is identified by conventional genetic testing of the two associated genes, KMT2D and KDM6A. Here, we describe two cases of suspected KS that met clinical diagnostic criteria and had a high gestalt match on the artificial intelligence platform Face2Gene. Although initial KS testing was negative, genome-wide DNA methylation (DNAm) was instrumental in guiding genome sequencing workflow to establish definitive molecular diagnoses. In one case, a positive DNAm signature for KMT2D led to the identification of a cryptic variant in KDM6A by genome sequencing; for the other case, a DNAm signature different from KS led to the detection of another diagnosis in the KS differential, CDK13-related disorder. This approach illustrates the clinical utility of DNAm signatures in the diagnostic workflow for the genome analyst or clinical geneticist-especially for disorders with overlapping clinical phenotypes.


Asunto(s)
Metilación de ADN , Enfermedades Vestibulares , Anomalías Múltiples , Inteligencia Artificial , Proteína Quinasa CDC2/genética , Metilación de ADN/genética , Cara/anomalías , Enfermedades Hematológicas , Histona Demetilasas/genética , Humanos , Mutación , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética , Flujo de Trabajo
11.
Hum Mol Genet ; 28(3): 372-385, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239726

RESUMEN

Children conceived using Assisted Reproductive Technologies (ART) have a higher incidence of growth and birth defects, attributable in part to epigenetic perturbations. Both ART and germline defects associated with parental infertility could interfere with epigenetic reprogramming events in germ cells or early embryos. Mouse models indicate that the placenta is more susceptible to the induction of epigenetic abnormalities than the embryo, and thus the placental methylome may provide a sensitive indicator of 'at risk' conceptuses. Our goal was to use genome-wide profiling to examine the extent of epigenetic abnormalities in matched placentas from an ART/infertility group and control singleton pregnancies (n = 44/group) from a human prospective longitudinal birth cohort, the Design, Develop, Discover (3D) Study. Principal component analysis revealed a group of ART outliers. The ART outlier group was enriched for females and a subset of placentas showing loss of methylation of several imprinted genes including GNAS, SGCE, KCNQT1OT1 and BLCAP/NNAT. Within the ART group, placentas from pregnancies conceived with in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) showed distinct epigenetic profiles as compared to those conceived with less invasive procedures (ovulation induction, intrauterine insemination). Male factor infertility and paternal age further differentiated the IVF/ICSI group, suggesting an interaction of infertility and techniques in perturbing the placental epigenome. Together, the results suggest that the human placenta is sensitive to the induction of epigenetic defects by ART and/or infertility, and we stress the importance of considering both sex and paternal factors and that some but not all ART conceptuses will be susceptible.


Asunto(s)
Placenta/fisiología , Placentación/genética , Técnicas Reproductivas Asistidas/efectos adversos , Adulto , Estudios de Cohortes , ADN/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica , Femenino , Fertilización In Vitro/efectos adversos , Estudio de Asociación del Genoma Completo/métodos , Impresión Genómica/genética , Humanos , Lactante , Recién Nacido , Infertilidad Masculina/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos Animales , Inducción de la Ovulación/efectos adversos , Placenta/metabolismo , Embarazo , Análisis de Componente Principal , Estudios Prospectivos , Reproducción , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos
12.
Br J Cancer ; 124(2): 437-446, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33012783

RESUMEN

BACKGROUND: Although cure rates for Wilms tumours (WT) are high, many patients receive therapy with attendant long-term complications. Our goal was to stratify WT using genome-wide analyses to identify candidate molecular features for patients who would benefit from a reduction in therapy. METHODS: We generated DNA methylation and exome sequencing data on WT-kidney pairs (n = 57) and unpaired tumours (n = 27) collected either at our centre or by the Children's Oncology Group. Samples were divided into a discovery set (n = 32) and validation set (n = 52). RESULTS: Analysis of DNA methylation revealed two subgroups of WT with distinct features. Subgroup A has a similar DNA methylation profile to mature kidney, while Subgroup B has genome-wide dysregulation of DNA methylation. The rate of non-synonymous missense mutations and segmental chromosomal aberrations was higher in Subgroup B tumours, suggesting that this group has genome instability related to its epigenetic state. Subgroup A had a higher proportion of cases of bilateral disease. Tumours with high-risk histology or from patients who relapsed were only found in Subgroup B. CONCLUSION: We have identified subgroup-specific molecular events that could inform future work supporting more targeted therapeutic approaches and patient stratification. We propose a novel developmental tumour model based on these findings.


Asunto(s)
Neoplasias Renales/genética , Tumor de Wilms/genética , Niño , Aberraciones Cromosómicas , Metilación de ADN/genética , Femenino , Perfilación de la Expresión Génica/métodos , Genes del Tumor de Wilms , Humanos , Neoplasias Renales/clasificación , Masculino , Mutación , Secuenciación del Exoma , Tumor de Wilms/clasificación
13.
Mol Med ; 27(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413077

RESUMEN

BACKGROUND: Fetal growth restriction (FGR) is associated with increased risks for complications before, during, and after birth, in addition to risk of disease through to adulthood. Although placental insufficiency, failure to supply the fetus with adequate nutrients, underlies most cases of FGR, its causes are diverse and not fully understood. One of the few diagnosable causes of placental insufficiency in ongoing pregnancies is the presence of large chromosomal imbalances such as trisomy confined to the placenta; however, the impact of smaller copy number variants (CNVs) has not yet been adequately addressed. In this study, we confirm the importance of placental aneuploidy, and assess the potential contribution of CNVs to fetal growth. METHODS: We used molecular-cytogenetic approaches to identify aneuploidy in placentas from 101 infants born small-for-gestational age (SGA), typically used as a surrogate for FGR, and from 173 non-SGA controls from uncomplicated pregnancies. We confirmed aneuploidies and assessed mosaicism by microsatellite genotyping. We then profiled CNVs using high-resolution microarrays in a subset of 53 SGA and 61 control euploid placentas, and compared the load, impact, gene enrichment and clinical relevance of CNVs between groups. Candidate CNVs were confirmed using quantitative PCR. RESULTS: Aneuploidy was over tenfold more frequent in SGA-associated placentas compared to controls (11.9% vs. 1.1%; p = 0.0002, OR = 11.4, 95% CI 2.5-107.4), was confined to the placenta, and typically involved autosomes, whereas only sex chromosome abnormalities were observed in controls. We found no significant difference in CNV load or number of placental-expressed or imprinted genes in CNVs between SGA and controls, however, a rare and likely clinically-relevant germline CNV was identified in 5.7% of SGA cases. These CNVs involved candidate genes INHBB, HSD11B2, CTCF, and CSMD3. CONCLUSIONS: We conclude that placental genomic imbalances at the cytogenetic and submicroscopic level may underlie up to ~ 18% of SGA cases in our population. This work contributes to the understanding of the underlying causes of placental insufficiency and FGR, which is important for counselling and prediction of long term outcomes for affected cases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Retardo del Crecimiento Fetal/genética , Inestabilidad de Microsatélites , Placenta/química , Aneuploidia , Estudios de Casos y Controles , Análisis Citogenético/métodos , Femenino , Impresión Genómica , Técnicas de Genotipaje , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Mosaicismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Embarazo
14.
Genes Dev ; 27(5): 485-90, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23431031

RESUMEN

Proper neurological function in humans requires precise control of levels of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2). MeCP2 protein levels are low in fetal brains, where the predominant MECP2 transcripts have an unusually long 3' untranslated region (UTR). Here, we show that miR-483-5p, an intragenic microRNA of the imprinted IGF2, regulates MeCP2 levels through a human-specific binding site in the MECP2 long 3' UTR. We demonstrate the inverse correlation of miR-483-5p and MeCP2 levels in developing human brains and fibroblasts from Beckwith-Wiedemann syndrome patients. Importantly, expression of miR-483-5p rescues abnormal dendritic spine phenotype of neurons overexpressing human MeCP2. In addition, miR-483-5p modulates the levels of proteins of the MeCP2-interacting corepressor complexes, including HDAC4 and TBL1X. These data provide insight into the role of miR-483-5p in regulating the levels of MeCP2 and interacting proteins during human fetal development.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Sitios de Unión , Encéfalo/embriología , Encéfalo/fisiopatología , Línea Celular , Feto/embriología , Feto/metabolismo , Feto/fisiopatología , Impresión Genómica , Humanos , Neuronas/patología , Unión Proteica
15.
Hum Mutat ; 41(10): 1722-1733, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623772

RESUMEN

Epigenetic processes play a key role in regulating gene expression. Genetic variants that disrupt chromatin-modifying proteins are associated with a broad range of diseases, some of which have specific epigenetic patterns, such as aberrant DNA methylation (DNAm), which may be used as disease biomarkers. While much of the epigenetic research has focused on cancer, there is a paucity of resources devoted to neurodevelopmental disorders (NDDs), which include autism spectrum disorder and many rare, clinically overlapping syndromes. To address this challenge, we created EpigenCentral, a free web resource for biomedical researchers, molecular diagnostic laboratories, and clinical practitioners to perform the interactive classification and analysis of DNAm data related to NDDs. It allows users to search for known disease-associated patterns in their DNAm data, classify genetic variants as pathogenic or benign to assist in molecular diagnostics, or analyze patterns of differential methylation in their data through a simple web form. EpigenCentral is freely available at http://epigen.ccm.sickkids.ca/.


Asunto(s)
Trastorno del Espectro Autista , Metilación de ADN , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Metilación de ADN/genética , Análisis de Datos , Epigénesis Genética , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
16.
Am J Hum Genet ; 100(3): 488-505, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257691

RESUMEN

CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10-12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.


Asunto(s)
Islas de CpG , Metilación de ADN , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Adolescente , Adulto , Secuencia de Bases , Línea Celular , Niño , Femenino , Células Madre Embrionarias Humanas/química , Humanos , Modelos Lineales , Masculino , Linaje , Embarazo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Adulto Joven
17.
Am J Hum Genet ; 100(5): 773-788, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475860

RESUMEN

Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.


Asunto(s)
Anomalías Múltiples/genética , Síndrome CHARGE/genética , Metilación de ADN , Epigénesis Genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Síndrome CHARGE/diagnóstico , Línea Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Enfermedades Hematológicas/diagnóstico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Enfermedades Vestibulares/diagnóstico
18.
Am J Med Genet C Semin Med Genet ; 181(4): 491-501, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31828978

RESUMEN

In recent years, numerous overgrowth syndromes have been found to be caused by pathogenic DNA sequence variants in "epigenes," genes that encode proteins that function in epigenetic regulation. Epigenetic marks, including DNA methylation (DNAm), histone modifications and chromatin conformation, have emerged as a vital genome-wide regulatory mechanism that modulate the transcriptome temporally and spatially to drive normal developmental and cellular processes. Evidence suggests that epigenetic marks are layered and engage in crosstalk, in that disruptions of any one component of the epigenetic machinery impact the others. This interdependence of epigenetic marks underpins the recent identification of gene-specific DNAm signatures for a variety of disorders caused by pathogenic variants in epigenes. Here, we discuss the power of DNAm signatures with respect to furthering our understanding of disease pathophysiology, enhancing the efficacy of molecular diagnostics and identifying new targets for therapeutics of overgrowth syndromes. These findings highlight the promise of the field of epigenomics to provide unprecedented insights into disease mechanisms generating a host of opportunities to advance precision medicine.


Asunto(s)
Epigénesis Genética , Trastornos del Crecimiento/genética , Investigación Biomédica Traslacional , Metilación de ADN , Humanos , Síndrome de Sotos/diagnóstico , Síndrome de Sotos/genética , Síndrome de Sotos/fisiopatología , Síndrome
19.
Am J Med Genet C Semin Med Genet ; 181(4): 532-547, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31736240

RESUMEN

The Polycomb repressive complex 2 is an epigenetic writer and recruiter with a role in transcriptional silencing. Constitutional pathogenic variants in its component proteins have been found to cause two established overgrowth syndromes: Weaver syndrome (EZH2-related overgrowth) and Cohen-Gibson syndrome (EED-related overgrowth). Imagawa et al. (2017) initially reported a singleton female with a Weaver-like phenotype with a rare coding SUZ12 variant-the same group subsequently reported two additional affected patients. Here we describe a further 10 patients (from nine families) with rare heterozygous SUZ12 variants who present with a Weaver-like phenotype. We report four frameshift, two missense, one nonsense, and two splice site variants. The affected patients demonstrate variable pre- and postnatal overgrowth, dysmorphic features, musculoskeletal abnormalities and developmental delay/intellectual disability. Some patients have genitourinary and structural brain abnormalities, and there may be an association with respiratory issues. The addition of these 10 patients makes a compelling argument that rare pathogenic SUZ12 variants frequently cause overgrowth, physical abnormalities, and abnormal neurodevelopmental outcomes in the heterozygous state. Pathogenic SUZ12 variants may be de novo or inherited, and are sometimes inherited from a mildly-affected parent. Larger samples sizes will be needed to elucidate whether one or more clinically-recognizable syndromes emerge from different variant subtypes.


Asunto(s)
Trastornos del Crecimiento/genética , Fenotipo , Complejo Represivo Polycomb 2/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Mutación , Proteínas de Neoplasias , Factores de Transcripción
20.
Am J Pathol ; 188(10): 2177-2194, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121256

RESUMEN

Chronic bladder obstruction and bladder smooth muscle cell (SMC) stretch provide fibrotic and mechanical environments that can lead to epigenetic change. Therefore, we examined the role of DNA methylation in bladder pathology and transcriptional control. Sprague-Dawley female rats underwent partial bladder obstruction by ligation of a silk suture around the proximal urethra next to a 0.9-mm steel rod. Sham operation comprised passing the suture around the urethra. After 2 weeks, rats were randomized to normal saline or DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (DAC) at 1 mg/kg, three times/week intraperitoneally. After 6 weeks, bladders were weighed and divided for histology and RNA analysis by high-throughput real-time quantitative PCR arrays. DAC treatment during obstruction in vivo profoundly augmented brain-derived neurotrophic factor (BDNF) expression compared with the obstruction with vehicle group, which was statistically correlated with pathophysiologic parameters. BDNF, cysteine rich angiogenic inducer 61 (CYR61), and connective tissue growth factor (CTGF) expression clustered tightly together using Pearson's correlation analysis. Their promoters were associated with the TEA domain family member 1 (TEAD1) and Yes-associated protein 1/WW domain containing transcription regulator 1 pathways. Interestingly, DAC treatment increased BDNF expression in bladder SMCs (P < 0.0002). Stretch-induced BDNF was inhibited by the YAP/WWTR1 inhibitor verteporfin. Verteporfin improved the SMC phenotype (proliferative markers and SMC marker expression), in part by reducing BDNF. Expression of BDNF is limited by DNA methylation and associated with pathophysiologic changes during partial bladder outlet obstruction and SMC phenotypic change in vitro.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Metilación de ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Obstrucción del Cuello de la Vejiga Urinaria/fisiopatología , Animales , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Femenino , Miocitos del Músculo Liso/fisiología , Ratas Sprague-Dawley , Estrés Mecánico , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Verteporfina/farmacología , Dominios WW/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda