Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biomed Pharmacother ; 176: 116842, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810404

RESUMEN

With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.


Asunto(s)
Grafito , Grafito/toxicidad , Grafito/química , Humanos , Animales , Nanopartículas , Sistema Inmunológico/efectos de los fármacos
2.
Biomed Pharmacother ; 171: 116160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237351

RESUMEN

The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.


Asunto(s)
Nanoestructuras , Pez Cebra , Animales , Humanos , Modelos Animales , Hígado , Mamíferos
3.
Materials (Basel) ; 16(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176475

RESUMEN

The current study aims to improve clarithromycin bioavailability and effectiveness in complicated intra-abdominal infection management. Therefore, clarithromycin-loaded submicron dual lipid carriers (CLA-DLCs) were developed via hot high shear homogenization technique and evaluated for colloidal parameters, release behavior, stability study, and in-vitro antibiofilm activity. Bioavailability and therapeutic efficacy of optimized formulation on hampering cytokines storm induction was determined in E. coli-induced peritonitis. The developed CLA-DLCs (particle size 326.19 ± 24.14 nm, zeta potential -31.34 ± 2.81 mV, and entrapment efficiency 85.78 ± 4.01%) exhibited smooth spherical shapes and sustained in vitro release profiles. Long-term stability study of optimized CLA-DLCs ensured maintenance of colloidal parameters for 1 year at room temperature. In vitro antimicrobial studies revealed 3.43-fold higher anti-biofilm activity of CLA-DLCs compared with clarithromycin. In addition, the relative bioavailability of CLA-DLCs was enhanced 5.89-fold compared to pure drug in rats. The remarkable decrease in microbial burden in blood as well as tissues, along with oxidative stress markers (lipid peroxidation, myeloperoxidase activity, and carbonylated protein level) and immunological markers (total leukocyte count, neutrophil migration, NO, TNF-, and IL-6) on treatment with CLA-DLCs enhanced the survival in a rat model of peritonitis compared with the pure drug and untreated groups. In conclusion, CLA-DLCs hold promising potential in management of intra-abdominal infections and prevention of associated complications.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770371

RESUMEN

Nanocomposites constructed with heterostructures of graphitic carbon nitride (g-C3N4), silver (Ag), and titanium dioxide (TiO2) have emerged as promising nanomaterials for various environmental, energy, and clinical applications. In the field of textiles, Ag and TiO2 are already recognized as essential nanomaterials for the chemical surface and bulk modification of various textile materials, but the application of composites with g-C3N4 as a green and visible-light-active photocatalyst has not yet been fully established. This review provides an overview of the construction of Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-C3N4 heterostructures; the mechanisms of their photocatalytic activity; and the application of photocatalytic textile platforms in the photochemical activation of organic synthesis, energy generation, and the removal of various organic pollutants from water. Future prospects for the functionalization of textiles using g-C3N4-containing heterostructures with Ag and TiO2 are highlighted.

5.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36832187

RESUMEN

Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of Mn+1XnTx (where n = 1-3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties. We particularly emphasize the property-activity-effect relationship of MXenes at the nano-bio interface. We also discuss the recent trends in the application of MXenes in accelerating the performance of conventional point of care (POC) devices towards more practical approaches as the next generation of POC tools. Finally, we explore in depth the existing problems, challenges, and potential for future improvement of MXene-based materials for POC testing, with the goal of facilitating their early realization of biological applications.

6.
Biosci Rep ; 42(2)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35103283

RESUMEN

Compared with other nanomaterials, surface-modified iron oxide nanoparticles (IONPs) have gained attraction for cancer therapy applications due to its low toxicity, and long retention time. An innocuous targeting strategy was developed by generation of fluorescein isothiocyanate (FITC)-labeled peptide (growth factor domain (GFD) and somatomedin B domain (SMB)) functionalized, chitosan-coated IONPs (IONPs/C). It can be used to target urokinase plasminogen activator receptor (uPAR), which is a surface biomarker, in ovarian cancer. Binding affinity between uPAR and peptides (GFD and SMB) were revealed by in-silico docking studies. The biophysical characterizations of IONPs, IONPs/C, and IONPs/C/GFD-FITC or SMB-FITC nanoprobes were assessed via Vibrating Sample Magnetometer (VSM), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). Prussian Blue staining, fluorescence spectroscopy, and fluorescence imaging were performed to confirm the targeting of nanoprobes with the surface receptor uPAR. The combination of IONPs/C/GFD+SMB showed efficient targeting of uPAR in the tumor microenvironment, and thus can be implemented as a molecular magnetic nanoprobe for cancer cell imaging and targeting.


Asunto(s)
Quitosano , Neoplasias Ováricas , Quitosano/química , Humanos , Nanopartículas Magnéticas de Óxido de Hierro , Neoplasias Ováricas/diagnóstico por imagen , Péptidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Microambiente Tumoral
7.
Mater Today Bio ; 17: 100463, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36310541

RESUMEN

Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.

8.
Cancers (Basel) ; 13(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34062991

RESUMEN

Magnetic nanoparticles gained considerable attention in last few years due to their remarkable properties. Superparamaganetism, non-toxicity, biocompatibility, chemical inertness, and environmental friendliness are some of the properties that make iron oxide nanoparticles (IONPs) an ideal choice for biomedical applications. Along with being easily tuneable and a tailored surface for conjugation of IONPs, their physio-chemical and biological properties can also be varied by modifying the basic parameters for synthesis that enhances the additional possibilities for designing novel magnetic nanomaterial for theranostic applications. This review highlights the synthesis, surface modification, and different applications of IONPs for diagnosis, imaging, and therapy. Furthermore, it also represents the recent report on the application of IONPs as enzyme mimetic compounds and a contrasting agent, and its significance in the field as an anticancer and antimicrobial agent.

9.
Front Immunol ; 12: 732756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970254

RESUMEN

Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR-Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Técnicas de Diagnóstico Molecular/métodos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , Humanos , Inmunoensayo/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/genética , Pandemias , ARN Viral/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
10.
Anal Bioanal Chem ; 397(4): 1467-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20101498

RESUMEN

Quantum dots (QDs) are preferred as high-resolution biological fluorescent probes because of their inherent optical properties compared with organic dyes. This intrinsic property of QDs has been made use of for sensitive detection of methylparathion (MP) at picogramme levels. The specificity of the assay was attributed to highly specific immunological reactions. Competitive binding between free MP and CdTe QD bioconjugated MP (MP-BSA-CdTe) with immobilized anti-MP IgY antibodies was monitored in a flow-injection system. The fluorescence intensity of MP-BSA-CdTe bioconjugate eluted from the column was found to be directly proportional to the free MP concentration. Hence, it was possible to detect MP in a linear range of 0.1-1 ng mL(-1) with a regression coefficient R(2) = 0.9905. In this investigation, IgY proved advantageous over IgG class immunoglobulins in terms of yield, stability, cost effectiveness, and enhancement of assay sensitivity. The photo-absorption spectrum of bioconjugated CdTe QD (lambda(max) = 310 nm) confirmed nano-biomolecular interactions. The results suggest the potential application of bioconjugation and nano-biomolecular interactions of QDs for biological labeling and target analyte detection with high sensitivity.


Asunto(s)
Compuestos de Cadmio/química , Cromatografía/métodos , Colorantes Fluorescentes/química , Técnicas Inmunológicas , Metil Paratión/análisis , Puntos Cuánticos , Compuestos de Sulfhidrilo/química , Telurio/química , Compuestos de Cadmio/síntesis química , Compuestos de Cadmio/inmunología , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Metil Paratión/inmunología , Telurio/inmunología
11.
Anal Biochem ; 388(2): 312-6, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19250918

RESUMEN

In the current article, chemiluminescence (CL) from the vitamin B(12) and luminol reaction was studied under alkaline conditions to develop a sensitive analytical method for vitamin B(12) using the carbonate enhancement effect. The method was successfully applied to the determination of vitamin B(12) in vitamin B(12) tablets, multivitamin capsules, and vitamin B(12) injections. Experimental parameters were optimized, including luminol concentration, urea-hydrogen peroxide (urea-H(2)O(2)) concentration, effect of pH, and sequence of addition of reactants for obtaining maximum CL, which was not explored previously. The limit of detection was 5 pg/ml, and the linear range was 10 pg/ml to 1 microg/ml with a regression coefficient of R(2)=0.9998. The importance of these experimental parameters and the carbonate enhancement effect is discussed based on the knowledge of the mechanism of oxidation of luminol and decomposition of urea-H2O2 in the presence of vitamin B(12). Extraction of vitamin B(12) was carried out, and the observed recovery was 97-99.2% with a relative standard deviation in the range of 0.30-1.09%. The results obtained were compared with those of the flame atomic absorption spectrometry method.


Asunto(s)
Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Vitamina B 12/análisis , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Luminol/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda