Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Agric Food Chem ; 70(9): 2851-2863, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226498

RESUMEN

Based on the structural characteristics of the cryptolepine alkaloid, a series of new quindoline derivatives bearing various substituents were prepared and evaluated for their fungicidal and antibacterial activities. Bioassay results showed that compound D7 displayed superior in vitro fungicidal activities against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium graminearum, and Rhizoctonia solani with EC50 values of 0.780, 3.62, 1.59, and 2.85 µg/mL, respectively. Compound A7 showed apparent antibacterial activities toward Xanthomonas oryzae pv. oryzae with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL. Significantly, in vivo antifungal activity suggested that the curative effect (98.3%) of compound D7 was comparable to that of the positive control azoxystrobin (96.7%) at 100 µg/mL. Preliminary mechanistic studies showed that compound D7 might cause mycelial abnormality of S. sclerotiorum, cell membrane breakage, accumulation of reactive oxygen species (ROS), and inhibition of sclerotia formation. Therefore, compound D7 could be a novel broad-spectrum fungicidal candidate against plant fungal diseases.


Asunto(s)
Fungicidas Industriales , Alcaloides Indólicos , Alcaloides , Antifúngicos/química , Fungicidas Industriales/química , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Indoles , Estructura Molecular , Quinolinas , Relación Estructura-Actividad
2.
Eur J Med Chem ; 227: 113937, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34710744

RESUMEN

Evodiamine and rutaecarpine are two alkaloids isolated from traditional Chinese herbal medicine Evodia rutaecarpa, which have been reported to have various biological activities in past decades. To explore the potential applications for evodiamine and rutaecarpine alkaloids and their derivatives, various kinds of evodiamine and rutaecarpine derivatives were designed and synthesized. Their antifungal profile against six phytopathogenic fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Magnaporthe oryzae were evaluated for the first time. Furthermore, a series of modified imidazole derivatives of rutaecarpine were synthesized to investigate the structure-activity relationship. The results of antifungal activities in vitro showed that imidazole derivative of rutaecarpine A1 exhibited broad-spectrum inhibitory activities against R. solani, B. cinerea, F. oxysporum, S. sclerotiorum, M. oryzae and F. graminearum with EC50 values of 1.97, 5.97, 12.72, 2.87 and 16.58 µg/mL, respectively. Preliminary mechanistic studies showed that compound A1 might cause mycelial abnormalities of S. sclerotiorum, mitochondrial distortion and swelling, and inhibition of sclerotia formation and germination. Moreover, the curative effects of compound A1 were 94.7%, 81.5%, 80.8%, 65.0% at 400, 200, 100, 50 µg/mL in vivo experiments, which was far more effective than the positive control azoxystrobin. Significantly, no phytotoxicity of compound A1 on oilseed rape leaves was observed obviously even at a high concentration of 400 µg/mL. Therefore, compound A1 is expected to be a novel leading structure for the development of new antifungal agents.


Asunto(s)
Antifúngicos/farmacología , Diseño de Fármacos , Alcaloides Indólicos/farmacología , Quinazolinas/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fusarium/efectos de los fármacos , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinazolinas/síntesis química , Quinazolinas/química , Rhizoctonia/efectos de los fármacos , Relación Estructura-Actividad
3.
J Agric Food Chem ; 69(48): 14467-14477, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34843231

RESUMEN

Crop diseases caused by fungi threaten food security and exacerbate the food crisis. Inspired by the application of fungicide candidates from natural products in agrochemical discovery, a series of luotonin A derivatives were designed, synthesized, and evaluated for their antifungal activities against five plant fungi. Most of these compounds exhibited significant fungicidal activity against Botrytis cinerea in vitro with EC50 values less than 1 µg/mL. Among them, compounds w7, w8, w12, and w15 showed superior antifungal activity against B. cinerea with EC50 values of 0.036, 0.050, 0.042, and 0.048 µg/mL, respectively, which were more potent than boscalid (EC50 = 1.790 µg/mL). Preliminary mechanism studies revealed that compound w7 might pursue its antifungal activity by disrupting the fungal cell membrane and cell wall. Moreover, in vivo bioassay also indicated that compound w7 could be effective for the control of B. cinerea. The above results evidenced the potential of luotonin A derivatives as novel and promising candidate fungicides.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Botrytis , Hongos , Fungicidas Industriales/farmacología , Pirroles , Quinonas , Relación Estructura-Actividad
4.
J Agric Food Chem ; 69(40): 11781-11793, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34582205

RESUMEN

Plant pathogenic fungi seriously affect agricultural production and are difficult to control. The discovery of new leads based on natural products is an important way to innovate fungicides. In this study, 30 natural-product-based magnolol derivatives were synthesized and characterized on the basis of NMR and mass spectroscopy. Bioactivity tests on phytopathogenic fungi (Rhizoctonia solani, Fusarium graminearum, Botrytis cinerea, and Sclerotinia sclerotiorum) in vitro of these compounds were performed systematically. The results showed that 11 compounds were active against four kinds of phytopathogenic fungi with EC50 values in the range of 1.40-20.00 µg/mL, especially compound L5 that exhibited excellent antifungal properties against B. cinerea with an EC50 value of 2.86 µg/mL, approximately 2.8-fold more potent than magnolol (EC50 = 8.13 µg/mL). Moreover, compound L6 showed the highest antifungal activity against F. graminearum and Rhophitulus solani with EC50 values of 4.39 and 1.40 µg/mL, respectively, and compound L7 showed good antifungal activity against S. sclerotiorum. Then, an in vivo experiment of compound L5 against B. cinerea was further investigated in vivo using infected tomatoes (curative effect, 50/200 and 36%/100 µg/mL). The physiological and biochemical studies illustrated that the primary action mechanism of compound L5 on B. cinerea might change the mycelium morphology, increase cell membrane permeability, and destroy the function of mitochondria. Furthermore, structure-activity relationship (SAR) studies revealed that hydroxyl groups play a key role in antifungal activity. To sum up, this study provides a reference for understanding the application of magnolol-based antifungal agents in crop protection.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Animales , Antifúngicos/farmacología , Ascomicetos , Compuestos de Bifenilo , Botrytis , Fungicidas Industriales/farmacología , Fusarium , Lignanos , Estructura Molecular , Rhizoctonia , Relación Estructura-Actividad
5.
J Agric Food Chem ; 69(4): 1259-1271, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33496176

RESUMEN

Inspired by the widely antiphytopathogenic application of diversified derivatives from natural sources, cryptolepine and its derivatives were subsequently designed, synthesized, and evaluated for their antifungal activities against four agriculturally important fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, and Sclerotinia sclerotiorum. The results obtained from in vitro assay indicated that compounds a1-a24 showed great fungicidal property against B. cinerea (EC50 < 4 µg/mL); especially, a3 presented significantly prominent inhibitory activity with an EC50 of 0.027 µg/mL. In the pursuit of further expanding the antifungal spectrum of cryptolepine, ring-opened compound f1 produced better activity with an EC50 of 3.632 µg/mL against R. solani and an EC50 of 5.599 µg/mL against F. graminearum. Furthermore, a3 was selected to be a candidate to investigate its preliminary antifungal mechanism to B. cinerea, revealing that not only spore germination was effectively inhibited and the normal physiological structure of mycelium was severely undermined but also detrimental reactive oxygen was obviously accumulated and the normal function of the nucleus was fairly disordered. Besides, in vivo curative experiment against B. cinerea found that the therapeutic action of a3 was comparable to that of the positive control azoxystrobin. These results suggested that compound a3 could be regarded as a novel and promising agent against B. cinerea for its valuable potency.


Asunto(s)
Fungicidas Industriales/síntesis química , Fungicidas Industriales/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Quinolinas/química , Quinolinas/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Diseño de Fármacos , Fungicidas Industriales/química , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo , Relación Estructura-Actividad
6.
J Agric Food Chem ; 69(41): 12156-12170, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623798

RESUMEN

Enlightened from our previous work of structural simplification of quinine and innovative application of natural products against phytopathogenic fungi, lead structure 2,8-bis(trifluoromethyl)-4-quinolinol (3) was selected to be a candidate and its diversified design, synthesis, and antifungal evaluation were carried out. All of the synthesized compounds Aa1-Db1 were evaluated for their antifungal activity against four agriculturally important fungi, Botrytis cinerea, Fusarium graminearum, Rhizoctonia solani, and Sclerotinia sclerotiorum. Results showed that compounds Ac3, Ac4, Ac7, Ac9, Ac12, Bb1, Bb10, Bb11, Bb13, Cb1. and Cb3 exhibited a good antifungal effect, especially Ac12 had the most potent activity with EC50 values of 0.52 and 0.50 µg/mL against S. sclerotiorum and B. cinerea, respectively, which were more potent than those of the lead compound 3 (1.72 and 1.89 µg/mL) and commercial fungicides azoxystrobin (both >30 µg/mL) and 8-hydroxyquinoline (2.12 and 5.28 µg/mL). Moreover, compound Ac12 displayed excellent in vivo antifungal activity, which was comparable in activity to the commercial fungicide boscalid. The preliminary mechanism revealed that compound Ac12 might cause an abnormal morphology of cell membranes, an increase in membrane permeability, and release of cellular contents. These results indicated that compound Ac12 displayed superior in vitro and in vivo fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.


Asunto(s)
Fungicidas Industriales , Fusarium , Hidroxiquinolinas , Quinolinas , Antifúngicos/farmacología , Ascomicetos , Botrytis , Hongos , Fungicidas Industriales/farmacología , Estructura Molecular , Quinina , Rhizoctonia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda