Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 584(7821): 425-429, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32604404

RESUMEN

On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Brotes de Enfermedades/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Asintomáticas/epidemiología , Betacoronavirus/enzimología , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Niño , Preescolar , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Humanos , Lactante , Recién Nacido , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/transmisión , Neumonía Viral/virología , Prevalencia , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética , Carga Viral , Proteínas no Estructurales Virales/genética , Adulto Joven
2.
PLoS Comput Biol ; 17(2): e1008588, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571187

RESUMEN

The spatial dynamics of epidemics are fundamentally affected by patterns of human mobility. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow semi-mechanistic models of movement to be parameterised even for resource-poor settings. While the gravity model typically reproduces human movement reasonably well at the administrative level spatial scale, past studies suggest that parameter estimates vary with the level of spatial discretisation at which models are fitted. Given that privacy concerns usually preclude public release of very fine-scale movement data, such variation would be problematic for individual-based simulations of epidemic spread parametrised at a fine spatial scale. We therefore present new methods to fit fine-scale mathematical mobility models (here we implement variants of the gravity and radiation models) to spatially aggregated movement data and investigate how model parameter estimates vary with spatial resolution. We use gridded population data at 1km resolution to derive population counts at different spatial scales (down to ∼ 5km grids) and implement mobility models at each scale. Parameters are estimated from administrative-level flow data between overnight locations in Kenya and Namibia derived from CDRs: where the model spatial resolution exceeds that of the mobility data, we compare the flow data between a particular origin and destination with the sum of all model flows between cells that lie within those particular origin and destination administrative units. Clear evidence of over-dispersion supports the use of negative binomial instead of Poisson likelihood for count data with high values. Radiation models use fewer parameters than the gravity model and better predict trips between overnight locations for both considered countries. Results show that estimates for some parameters change between countries and with spatial resolution and highlight how imperfect flow data and spatial population distribution can influence model fit.


Asunto(s)
Teléfono Celular , Simulación por Computador , Almacenamiento y Recuperación de la Información , Dinámica Poblacional , Epidemias , Humanos , Kenia , Modelos Estadísticos , Método de Montecarlo , Namibia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Viaje
4.
BMC Infect Dis ; 16(1): 576, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756233

RESUMEN

BACKGROUND: Nearly every year Influenza affects most countries worldwide and the risk of a new pandemic is always present. Therefore, influenza is a major concern for public health. School-age individuals are often the most affected group, suggesting that the inclusion in preparedness plans of school closure policies may represent an option for influenza mitigation. However, their applicability remains uncertain and their implementation should carefully be weighed on the basis of cost-benefit considerations. METHODS: We developed an individual-based model for influenza transmission integrating data on sociodemography and time use of the Italian population, face-to-face contacts in schools, and influenza natural history. The model was calibrated on the basis of epidemiological data from the 2009 influenza pandemic and was used to evaluate the effectiveness of three reactive school closure strategies, all based on school absenteeism. RESULTS: In the case of a new influenza pandemic sharing similar features with the 2009 H1N1 pandemic, gradual school closure strategies (i.e., strategies closing classes first, then grades or the entire school) could lead to attack rate reduction up to 20-25 % and to peak weekly incidence reduction up to 50-55 %, at the cost of about three school weeks lost per student. Gradual strategies are quite stable to variations in the start of policy application and to the threshold on student absenteeism triggering class (and school) closures. In the case of a new influenza pandemic showing different characteristics with respect to the 2009 H1N1 pandemic, we found that the most critical features determining the effectiveness of school closure policies are the reproduction number and the age-specific susceptibility to infection, suggesting that these two epidemiological quantities should be estimated early on in the spread of a new pandemic for properly informing response planners. CONCLUSIONS: Our results highlight a potential beneficial effect of reactive gradual school closure policies in mitigating influenza spread, conditioned on the effort that decision makers are willing to afford. Moreover, the suggested strategies are solely based on routinely collected and easily accessible data (such as student absenteeism irrespective of the cause and ILI incidence) and thus they appear to be applicable in real world situations.


Asunto(s)
Brotes de Enfermedades/prevención & control , Gripe Humana/transmisión , Instituciones Académicas , Absentismo , Adolescente , Calibración , Niño , Análisis Costo-Beneficio , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/economía , Gripe Humana/epidemiología , Italia , Modelos Teóricos , Salud Pública , Estudiantes
5.
Nat Commun ; 13(1): 5870, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198689

RESUMEN

Population testing remains central to COVID-19 control and surveillance, with countries increasingly using antigen tests rather than molecular tests. Here we describe a SARS-CoV-2 variant that escapes N antigen tests due to multiple disruptive amino-acid substitutions in the N protein. By fitting a multistrain compartmental model to genomic and epidemiological data, we show that widespread antigen testing in the Italian region of Veneto favored the undetected spread of the antigen-escape variant compared to the rest of Italy. We highlight novel limitations of widespread antigen testing in the absence of molecular testing for diagnostic or confirmatory purposes. Notably, we find that genomic surveillance systems which rely on antigen population testing to identify samples for sequencing will bias detection of escape antigen test variants. Together, these findings highlight the importance of retaining molecular testing for surveillance purposes, including in contexts where the use of antigen tests is widespread.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Italia/epidemiología , SARS-CoV-2/genética
6.
Nat Commun ; 12(1): 4383, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282139

RESUMEN

In February and March 2020, two mass swab testing campaigns were conducted in Vo', Italy. In May 2020, we tested 86% of the Vo' population with three immuno-assays detecting antibodies against the spike and nucleocapsid antigens, a neutralisation assay and Polymerase Chain Reaction (PCR). Subjects testing positive to PCR in February/March or a serological assay in May were tested again in November. Here we report on the results of the analysis of the May and November surveys. We estimate a seroprevalence of 3.5% (95% Credible Interval (CrI): 2.8-4.3%) in May. In November, 98.8% (95% Confidence Interval (CI): 93.7-100.0%) of sera which tested positive in May still reacted against at least one antigen; 18.6% (95% CI: 11.0-28.5%) showed an increase of antibody or neutralisation reactivity from May. Analysis of the serostatus of the members of 1,118 households indicates a 26.0% (95% CrI: 17.2-36.9%) Susceptible-Infectious Transmission Probability. Contact tracing had limited impact on epidemic suppression.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba de COVID-19/métodos , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/inmunología , Pruebas Serológicas/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Trazado de Contacto , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Italia/epidemiología , Masculino , Nucleocápside , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Wellcome Open Res ; 5: 170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954015

RESUMEN

Background: Since early March 2020, the COVID-19 epidemic across the United Kingdom has led to a range of social distancing policies, which have resulted in reduced mobility across different regions. Crowd level data on mobile phone usage can be used as a proxy for actual population mobility patterns and provide a way of quantifying the impact of social distancing measures on changes in mobility. Methods: Here, we use two mobile phone-based datasets (anonymised and aggregated crowd level data from O2 and from the Facebook app on mobile phones) to assess changes in average mobility, both overall and broken down into high and low population density areas, and changes in the distribution of journey lengths. Results: We show that there was a substantial overall reduction in mobility, with the most rapid decline on the 24th March 2020, the day after the Prime Minister's announcement of an enforced lockdown. The reduction in mobility was highly synchronized across the UK. Although mobility has remained low since 26th March 2020, we detect a gradual increase since that time. We also show that the two different datasets produce similar trends, albeit with some location-specific differences. We see slightly larger reductions in average mobility in high-density areas than in low-density areas, with greater variation in mobility in the high-density areas: some high-density areas eliminated almost all mobility. Conclusions: These analyses form a baseline from which to observe changes in behaviour in the UK as social distancing is eased and inform policy towards the future control of SARS-CoV-2 in the UK.

8.
Wellcome Open Res ; 5: 81, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500100

RESUMEN

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda