Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Respir Crit Care Med ; 193(11): 1254-63, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26699672

RESUMEN

RATIONALE: The assessment of lung recruitability in patients with acute respiratory distress syndrome (ARDS) may be important for planning recruitment maneuvers and setting positive end-expiratory pressure (PEEP). OBJECTIVES: To determine whether lung recruitment measured by respiratory mechanics is comparable with lung recruitment measured by computed tomography (CT). METHODS: In 22 patients with ARDS, lung recruitment was assessed at 5 and 15 cm H2O PEEP by using respiratory mechanics-based methods: (1) increase in gas volume between two pressure-volume curves (P-Vrs curve); (2) increase in gas volume measured and predicted on the basis of expected end-expiratory lung volume and static compliance of the respiratory system (EELV-Cst,rs); as well as by CT scan: (3) decrease in noninflated lung tissue (CT [not inflated]); and (4) decrease in noninflated and poorly inflated tissue (CT [not + poorly inflated]). MEASUREMENTS AND MAIN RESULTS: The P-Vrs curve recruitment was significantly higher than EELV-Cst,rs recruitment (423 ± 223 ml vs. 315 ± 201 ml; P < 0.001), but these measures were significantly related to each other (R(2) = 0.93; P < 0.001). CT (not inflated) recruitment was 77 ± 86 g and CT (not + poorly inflated) was 80 ± 67 g (P = 0.856), and these measures were also significantly related to each other (R(2) = 0.20; P = 0.04). Recruitment measured by respiratory mechanics was 54 ± 28% (P-Vrs curve) and 39 ± 25% (EELV-Cst,rs) of the gas volume at 5 cm H2O PEEP. Recruitment measured by CT scan was 5 ± 5% (CT [not inflated]) and 6 ± 6% (CT [not + poorly inflated]) of lung tissue. CONCLUSIONS: Respiratory mechanics and CT measure-under the same term, "recruitment"-two different entities. The respiratory mechanics-based methods include gas entering in already open pulmonary units that improve their mechanical properties at higher PEEP. Consequently, they can be used to assess the overall improvement of inflation. The CT scan measures the amount of collapsed tissue that regains inflation. Clinical trial registered with www.clinicaltrials.gov (NCT00759590).


Asunto(s)
Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Rendimiento Pulmonar , Mediciones del Volumen Pulmonar , Masculino , Persona de Mediana Edad
2.
Crit Care ; 17(3): R93, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706034

RESUMEN

INTRODUCTION: Although computed tomography (CT) is widely used to investigate different pathologies, quantitative data from normal populations are scarce. Reference values may be useful to estimate the anatomical or physiological changes induced by various diseases. METHODS: We analyzed 100 helical CT scans taken for clinical purposes and referred as nonpathological by the radiologist. Profiles were manually outlined on each CT scan slice and each voxel was classified according to its gas/tissue ratio. For regional analysis, the lungs were divided into 10 sterno-vertebral levels. RESULTS: We studied 53 males and 47 females (age 64 ± 13 years); males had a greater total lung volume, lung gas volume and lung tissue. Noninflated tissue averaged 7 ± 4% of the total lung weight, poorly inflated tissue averaged 18 ± 3%, normally inflated tissue averaged 65 ± 8% and overinflated tissue averaged 11 ± 7%. We found a significant correlation between lung weight and subject's height (P <0.0001, r2 = 0.49); the total lung capacity in a supine position was 4,066 ± 1,190 ml, ~1,800 ml less than the predicted total lung capacity in a sitting position. Superimposed pressure averaged 2.6 ± 0.5 cmH2O. CONCLUSION: Subjects without lung disease present significant amounts of poorly inflated and overinflated tissue. Normal lung weight can be predicted from patient's height with reasonable confidence.


Asunto(s)
Mediciones del Volumen Pulmonar/métodos , Pulmón/anatomía & histología , Tomografía Computarizada por Rayos X/métodos , Anciano , Estatura , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Valores de Referencia , Estudios Retrospectivos
3.
Intensive Care Med ; 40(5): 691-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24647812

RESUMEN

PURPOSE: Chest computed tomography (CT) is a fundamental tool for the characterization of acute respiratory distress syndrome (ARDS). Its frequent use is, however, hindered by the associated radiation exposure. The aim of the present study was to evaluate, in patients with ARDS, the accuracy of quantitative and visual anatomical lung analysis performed on low-dose CT. We hypothesized that low-dose CT would provide accurate quantitative and visual anatomical results. METHODS: Chest CT was performed in 45 ARDS patients in static conditions at set airway pressures of 45 and 15 or 45 and 5 cmH2O. During each pause, two consecutive scans were obtained at two different tube current-time products (mAs). In 24 patients 110 mAs was coupled with 60 mAs; in 21 patients 110 was coupled with 30 mAs. All other CT parameters were kept unaltered. Quantitative and visual anatomical results obtained at different mAs were compared via Bland-Altman analysis. RESULTS: Good agreements were observed between 110 and 60 mAs and between 110 and 30 mAs both for quantitative and visual anatomical results (all biases below 1.5%). Estimated mean effective dose at 110, 60, and 30 mAs corresponded to 5.3 ± 1.6, 2.8 ± 0.8, and 1.4 ± 0.3 mSv, respectively. CONCLUSIONS: In patients with ARDS a reduction of mAs up to 30 (70 % effective dose reduction) can be achieved without significant effect on quantitative and visual anatomical results. Low-dose chest CT, with related quantitative and visual anatomical analysis, could be a valuable tool to characterize and potentially monitor lung disease in patients with ARDS.


Asunto(s)
Dosis de Radiación , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Anciano , Femenino , Humanos , Italia , Modelos Lineales , Masculino , Estudios Prospectivos , Radiografía Torácica/efectos adversos , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodos
4.
Intensive Care Med ; 39(1): 66-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22990871

RESUMEN

PURPOSE: The computation of lung recruitability in acute respiratory distress syndrome (ARDS) is advocated to set positive end-expiratory pressure (PEEP) for preventing lung collapse. The quantitative lung CT scan, obtained by manual image processing, is the reference method but it is time consuming. The aim of this study was to evaluate the accuracy of a visual anatomical analysis compared with a quantitative lung CT scan analysis in assessing lung recruitability. METHODS: Fifty sets of two complete lung CT scans of ALI/ARDS patients computing lung recruitment were analyzed. Lung recruitability computed at an airway pressure of 5 and 45 cm H(2)O was defined as the percentage decrease in the collapsed/consolidated lung parenchyma assessed by two expert radiologists using a visual anatomical analysis and as the decrease in not aerated lung regions using a quantitative analysis computed by dedicated software. RESULTS: Lung recruitability was 11.3 % (interquartile range 7.39-16.41) and 15.5 % (interquartile range 8.18-21.43) with the visual anatomical and quantitative analysis, respectively. In the Bland-Altman analysis, the bias and agreement bands between the visual anatomical and quantitative analysis were -2.9 % (-11.8 to +5.9 %). The ROC curve showed that the optimal cutoff values for the visual anatomical analysis in predicting high versus low lung recruitability was 8.9 % (area under the ROC curve 0.9248, 95 % CI 0.8550-0.9946). Considering this cutoff, the sensitivity, specificity, and diagnostic accuracy were 0.96, 0.76, and 0.86, respectively. CONCLUSIONS: Visual anatomical analysis can classify patients into those with high and low lung recruitability allowing more intensivists to get access to lung recruitability assessment.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , Tomografía Computarizada por Rayos X , Lesión Pulmonar Aguda/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva , Respiración Artificial , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda