Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 39(5): e104546, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32073155

RESUMEN

To maintain cellular homeostasis, the endoplasmic reticulum (ER) necessitates a continuous removal of ER fragments via a selective, receptor-mediated, form of autophagy known as ER-phagy. In this issue of The EMBO Journal, Jiang et al (2020) shed light on how the best characterized autophagy receptor FAM134B mediates ER membrane fragmentation, the earliest event during ER-phagy. They propose a dynamic model for FAM134B protein oligomerization and ER membrane scission, which are driven by CAMK2B-mediated phosphorylation of the receptor and are altered in sensory neuropathy.


Asunto(s)
Autofagia , Proteínas de la Membrana , Proteínas Portadoras , Retículo Endoplásmico , Homeostasis
2.
EMBO J ; 39(17): e105696, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32716134

RESUMEN

Lysosomal degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is emerging as a critical regulator of cell homeostasis and function. The recent identification of ER-phagy receptors has shed light on the molecular mechanisms underlining this process. However, the signaling pathways regulating ER-phagy in response to cellular needs are still largely unknown. We found that the nutrient responsive transcription factors TFEB and TFE3-master regulators of lysosomal biogenesis and autophagy-control ER-phagy by inducing the expression of the ER-phagy receptor FAM134B. The TFEB/TFE3-FAM134B axis promotes ER-phagy activation upon prolonged starvation. In addition, this pathway is activated in chondrocytes by FGF signaling, a critical regulator of skeletal growth. FGF signaling induces JNK-dependent proteasomal degradation of the insulin receptor substrate 1 (IRS1), which in turn inhibits the PI3K-PKB/Akt-mTORC1 pathway and promotes TFEB/TFE3 nuclear translocation and enhances FAM134B transcription. Notably, FAM134B is required for protein secretion in chondrocytes, and cartilage growth and bone mineralization in medaka fish. This study identifies a new signaling pathway that allows ER-phagy to respond to both metabolic and developmental cues.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Núcleo Celular/genética , Retículo Endoplásmico/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/genética , Ratones , Oryzias
3.
Nature ; 528(7581): 272-5, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26595272

RESUMEN

Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.


Asunto(s)
Autofagia/fisiología , Desarrollo Óseo/fisiología , Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia , Desarrollo Óseo/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Embrión de Mamíferos , Matriz Extracelular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
4.
EMBO Mol Med ; 15(5): e16877, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987696

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.


Asunto(s)
Síndrome de Birt-Hogg-Dubé , Quistes , Neoplasias Renales , Humanos , Ratones , Animales , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción , Carcinogénesis/genética
5.
Sci Adv ; 8(35): eabo1215, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044577

RESUMEN

Selective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown. Here, we describe an activation mechanism unique to FAM134C during starvation. In fed conditions, FAM134C is phosphorylated by casein kinase 2 (CK2) at critical residues flanking the LIR domain. Phosphorylation of these residues negatively affects binding affinity to the autophagy proteins LC3. During starvation, mTORC1 inhibition limits FAM134C phosphorylation by CK2, hence promoting receptor activation and ER-phagy. Using a novel tool to study ER-phagy in vivo and FAM134C knockout mice, we demonstrated the physiological relevance of FAM134C phosphorylation during starvation-induced ER-phagy in liver lipid metabolism. These data provide a mechanistic insight into ER-phagy regulation and an example of autophagy selectivity during starvation.

6.
Front Cell Dev Biol ; 7: 114, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312633

RESUMEN

Macro (Autophagy) is a catabolic process that relies on the cooperative function of two organelles: the lysosome and the autophagosome. The recent discovery of a transcriptional gene network that co-regulates the biogenesis and function of these two organelles, and the identification of transcription factors, miRNAs and epigenetic regulators of autophagy, demonstrated that this catabolic process is controlled by both transcriptional and post-transcriptional mechanisms. In this review article, we discuss the nuclear events that control autophagy, focusing particularly on the role of the MiT/TFE transcription factor family. In addition, we will discuss evidence suggesting that the transcriptional regulation of autophagy could be targeted for the treatment of human genetic diseases, such as lysosomal storage disorders (LSDs) and neurodegeneration.

7.
FEBS Lett ; 593(17): 2319-2329, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31388984

RESUMEN

Protein misfolding occurring in the endoplasmic reticulum (ER) might eventually lead to aggregation and cellular distress, and is a primary pathogenic mechanism in multiple human disorders. Mammals have developed evolutionary-conserved quality control mechanisms at the level of the ER. The best characterized is the ER-associated degradation (ERAD) pathway, through which misfolded proteins translocate from the ER to the cytosol and are subsequently proteasomally degraded. However, increasing evidence indicates that additional quality control mechanisms apply for misfolded ER clients that are not eligible for ERAD. This review focuses on the alternative, ERAD-independent, mechanisms of clearance of misfolded polypeptides from the ER. These processes, collectively referred to as ER-to-lysosome-associated degradation, involve ER-phagy, microautophagy or vesicular transport. The identification of the underlying molecular mechanisms is particularly important for developing new therapeutic approaches for human diseases associated with protein aggregate formation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Animales , Autofagia , Enfermedad , Humanos
8.
Matrix Biol ; 71-72: 283-293, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29870768

RESUMEN

The lysosome is a catabolic organelle devoted to the degradation of cellular components, such as protein complexes and whole or portion of organelles that reach the lysosomes through (macro)autophagy. The lysosomes also function as signaling organelles by controlling the activity of key metabolic kinases, such as the mechanistic target of Rapamycin complex 1 (mTORC1). Lysosome dysfunction has dramatic consequences on cellular homeostasis and causes lysosomal storage disorders (LSDs). Here we review the recently proposed mechanisms by which impairment of lysosome/autophagy pathway affects extracellular matrix formation and skeletal development and growth. In particular, we will highlight the role of autophagy as a collagen quality control pathway in collagen-producing cells. An impairment of autophagy, such as the one observed in LSDs, leads to a collagen proteostatic defects and can explain, at least in part, the skeletal phenotypes characterizing patients with lysosomal storage disorders.


Asunto(s)
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Animales , Autofagia , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fenotipo , Proteostasis
9.
J Clin Invest ; 127(10): 3717-3729, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28872463

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.


Asunto(s)
Autofagia , Desarrollo Óseo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Beclina-1/genética , Beclina-1/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Fosfatidilinositoles/genética , Fosfatidilinositoles/metabolismo , Fosforilación/genética , Fosforilación/efectos de la radiación , Serina-Treonina Quinasas TOR/genética , Rayos Ultravioleta
10.
Science ; 347(6224): 878-82, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25700520

RESUMEN

Pancreatic ß cells lower insulin release in response to nutrient depletion. The question of whether starved ß cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic ß cells was suppressed upon starvation. Instead, starved ß cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, ß cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.


Asunto(s)
Autofagia , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Vesículas Secretoras/fisiología , Animales , Células Cultivadas , Ayuno , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteína Quinasa 13 Activada por Mitógenos/genética , Proteína Quinasa C/fisiología , Vesículas Secretoras/metabolismo
11.
Cell Cycle ; 15(7): 871-2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26939858
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda