Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Mol Med ; 21(12): 3224-3230, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28667701

RESUMEN

The genetic aetiology of sporadic neuroblastoma is still largely unknown. We have identified diverse neuroblastoma susceptibility loci by genomewide association studies (GWASs); however, additional SNPs that likely contribute to neuroblastoma susceptibility prompted this investigation for identification of additional variants that are likely hidden among signals discarded by the multiple testing corrections used in the analysis of genomewide data. There is evidence suggesting the CDKN1B, coding for the cycle inhibitor p27Kip1, is involved in neuroblastoma. We thus assess whether genetic variants of CDKN1B are associated with neuroblastoma. We imputed all possible genotypes across CDKN1B locus on a discovery case series of 2101 neuroblastoma patients and 4202 genetically matched controls of European ancestry. The most significantly associated rs34330 was analysed in an independent Italian cohort of 311 cases and 709 controls. In vitro functional analysis was carried out in HEK293T and in neuroblastoma cell line SHEP-2, both transfected with pGL3-CDKN1B-CC or pGL3-CDKN1B-TT constructs. We identified an association of the rs34330 T allele (-79C/T) with the neuroblastoma risk (Pcombined = 0.002; OR = 1.17). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27Kip1 promoter (P < 0.05). Three independent sets of neuroblastoma tumours carrying -79TT genotype showed a tendency towards lower CDKN1B mRNA levels. Our study shows that a functional variant, associated with a reduced CDKN1B gene transcription, influences neuroblastoma susceptibility.


Asunto(s)
Neoplasias Encefálicas/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Alelos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Riesgo
2.
Commun Biol ; 7(1): 351, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514806

RESUMEN

Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Animales , Ratones , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética
3.
Nat Commun ; 12(1): 6645, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789765

RESUMEN

The poles of the heart and branchiomeric muscles of the face and neck are formed from the cardiopharyngeal mesoderm within the pharyngeal apparatus. They are disrupted in patients with 22q11.2 deletion syndrome, due to haploinsufficiency of TBX1, encoding a T-box transcription factor. Here, using single cell RNA-sequencing, we now identify a multilineage primed population within the cardiopharyngeal mesoderm, marked by Tbx1, which has bipotent properties to form cardiac and branchiomeric muscle cells. The multilineage primed cells are localized within the nascent mesoderm of the caudal lateral pharyngeal apparatus and provide a continuous source of cardiopharyngeal mesoderm progenitors. Tbx1 regulates the maturation of multilineage primed progenitor cells to cardiopharyngeal mesoderm derivatives while restricting ectopic non-mesodermal gene expression. We further show that TBX1 confers this balance of gene expression by direct and indirect regulation of enriched genes in multilineage primed progenitors and downstream pathways, partly through altering chromatin accessibility, the perturbation of which can lead to congenital defects in individuals with 22q11.2 deletion syndrome.


Asunto(s)
Región Branquial/citología , Mesodermo/citología , Miocardio/citología , Proteínas de Dominio T Box/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Diferenciación Celular , Linaje de la Célula , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/embriología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética
4.
Front Cell Dev Biol ; 8: 571501, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015063

RESUMEN

The T-box transcription factor TBX1 has critical roles in the cardiopharyngeal lineage and the gene is haploinsufficient in DiGeorge syndrome, a typical developmental anomaly of the pharyngeal apparatus. Despite almost two decades of research, if and how TBX1 function triggers chromatin remodeling is not known. Here, we explored genome-wide gene expression and chromatin remodeling in two independent cellular models of Tbx1 loss of function, mouse embryonic carcinoma cells P19Cl6, and mouse embryonic stem cells (mESCs). The results of our study revealed that the loss or knockdown of TBX1 caused extensive transcriptional changes, some of which were cell type-specific, some were in common between the two models. However, unexpectedly we observed only limited chromatin changes in both systems. In P19Cl6 cells, differentially accessible regions (DARs) were not enriched in T-BOX binding motifs; in contrast, in mESCs, 34% (n = 47) of all DARs included a T-BOX binding motif and almost all of them gained accessibility in Tbx1 -/- cells. In conclusion, despite a clear transcriptional response of our cell models to loss of TBX1 in early cell differentiation, chromatin changes were relatively modest.

5.
Dis Model Mech ; 11(9)2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166330

RESUMEN

The TBX1 gene is haploinsufficient in 22q11.2 deletion syndrome (22q11.2DS), and genetic evidence from human patients and mouse models points to a major role of this gene in the pathogenesis of this syndrome. Tbx1 can activate and repress transcription, and previous work has shown that one of its functions is to negatively modulate cardiomyocyte differentiation. Tbx1 occupies the anterior heart field (AHF) enhancer of the Mef2c gene, which encodes a key cardiac differentiation transcription factor. Here, we show that increased dosage of Tbx1 correlates with downregulation of Mef2c expression and reduced acetylation of its AHF enhancer in cultured mouse myoblasts. Consistently, 22q11.2DS-derived and in vitro-differentiated human induced pluripotent stem cells (hiPSCs) expressed higher levels of MEF2C and showed increased AHF acetylation, compared with hiPSCs from a healthy donor. Most importantly, we show that in mouse embryos, loss of Tbx1 enhances the expression of the Mef2c-AHF-Cre transgene in a specific region of the splanchnic mesoderm, and in a dosage-dependent manner, providing an in vivo correlate of our cell culture data. These results indicate that Tbx1 regulates the Mef2c AHF enhancer by inducing histone deacetylation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Histonas/metabolismo , Proteínas de Dominio T Box/metabolismo , Acetilación , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Síndrome de DiGeorge/patología , Embrión de Mamíferos/metabolismo , Femenino , Factor de Transcripción GATA4/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción MEF2/genética , Ratones Transgénicos , Miocardio/citología , Miocardio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda