Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Gastroenterology ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128638

RESUMEN

BACKGROUND AND AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T cell interactions in organoid monolayers expressing human MHC class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial MHC class II (MHCII) was determined in active and treated CeD, and in non-immunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without IFN-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T cell co-cultures were incubated with gluten, pre-digested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Active CeD patients and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer-T cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T cell activation markers, and the release of IL-2, IFN-γ, and IL-15 in co-culture supernatants. Gluten metabolized by P. aeruginosa, but not the lasB mutant, enhanced CD4+ T cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten pre-digestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in CeD patients.

2.
Gastroenterology ; 156(8): 2266-2280, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30802444

RESUMEN

BACKGROUND & AIMS: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. METHODS: C57BL/6 (control), Myd88-/-, Ticam1-/-, and Il15-/- mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. RESULTS: In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. CONCLUSIONS: ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.


Asunto(s)
Enfermedad Celíaca/inmunología , Dieta Sin Gluten/métodos , Gliadina/efectos adversos , Lactobacillus/inmunología , Triticum/efectos adversos , Amilasas/antagonistas & inhibidores , Animales , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/fisiopatología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/inmunología , Gliadina/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Lactobacillus/metabolismo , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Triticum/inmunología , Inhibidores de Tripsina/inmunología , Inhibidores de Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda