Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31748390

RESUMEN

Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.


Asunto(s)
Virus del Sarampión/metabolismo , Nucleoproteínas/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Animales , Proteínas Portadoras , Línea Celular , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Sarampión/virología , Virus del Sarampión/genética , Proteínas de la Nucleocápside , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero , Proteínas no Estructurales Virales/fisiología , Proteínas Virales/metabolismo , Activación Viral/genética , Replicación Viral/genética
2.
J Virol ; 90(17): 7607-17, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334587

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


Asunto(s)
VIH-1/fisiología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Internalización del Virus , Liberación del Virus , Transporte Biológico , Linfocitos T CD4-Positivos/virología , Células Dendríticas/virología , Humanos , Modelos Biológicos , Replicación Viral
3.
Autophagy ; 19(3): 858-872, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35900944

RESUMEN

Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/ß-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Asunto(s)
Autofagia , Coinfección , Humanos , Autofagia/genética , Proteína Sequestosoma-1/metabolismo , Virus del Sarampión/metabolismo , Salmonella typhimurium , Proteínas Portadoras
4.
Viruses ; 9(5)2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28531150

RESUMEN

Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO2 and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/fisiología , Virus del Sarampión/fisiología , Sarampión/virología , Replicación Viral/fisiología , Proteínas de Ciclo Celular , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Virus del Sarampión/patogenicidad , Proteínas de Transporte de Membrana , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda