Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 35(5): 1198-206, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25814672

RESUMEN

OBJECTIVE: Focal adhesions (FAs) link the cytoskeleton to the extracellular matrix and as such play important roles in growth, migration, and contractile properties of vascular smooth muscle cells. Recently, it has been shown that downregulation of Nox4, a transforming growth factor (TGF) ß-inducible, hydrogen peroxide (H2O2)-producing enzyme, affects the number of FAs. However, the effectors downstream of Nox4 that mediate FA regulation are unknown. The FA resident protein H2O2-inducible clone (Hic)-5 is H2O2 and TGFß inducible, and a binding partner of the heat shock protein (Hsp) 27. The objective of this study was to elucidate the mechanism, by which Hic-5 and Hsp27 participate in TGFß-induced, Nox4-mediated vascular smooth muscle cell adhesion and migration. APPROACH AND RESULTS: Through a combination of molecular biology and biochemistry techniques, we found that TGFß, by a Nox4-dependent mechanism, induces the expression and interaction of Hic-5 and Hsp27, which is essential for Hic-5 localization to FAs. Importantly, we found that Hic-5 expression is required for the TGFß-mediated increase in FA number, adhesive forces and migration. Mechanistically, Nox4 downregulation impedes Smad (small body size and mothers against decapentaplegic) signaling by TGFß, and Hsp27 and Hic-5 upregulation by TGFß is blocked in small body size and mothers against decapentaplegic 4-deficient cells. CONCLUSIONS: Hic-5 and Hsp27 are effectors of Nox4 required for TGFß-stimulated FA formation, adhesion strength and migration in vascular smooth muscle cell.


Asunto(s)
Proteínas de Choque Térmico HSP27/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , NADPH Oxidasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adhesión Celular/genética , Adhesión Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Adhesiones Focales/genética , Adhesiones Focales/fisiología , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Músculo Liso Vascular/citología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Sensibilidad y Especificidad , Transducción de Señal
2.
Arterioscler Thromb Vasc Biol ; 27(4): 762-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17272743

RESUMEN

OBJECTIVE: Human endothelial cells use the multidrug resistance protein-1 (MRP1) to export glutathione disulfide (GSSG). This can promotes thiol loss during states of increased glutathione oxidation. We investigated how MRP1 modulates blood pressure and vascular function during angiotensin II-induced hypertension. METHODS AND RESULTS: Angiotensin II-induced hypertension altered vascular glutathione flux by increasing GSSG export and decreasing vascular levels of glutathione in wild-type (FVB) but not in MRP1-/- mice. Aortic endothelium-dependent vasodilatation was reduced in FVB after angiotensin II infusion, but unchanged in MRP1-/- mice. Aortic superoxide (O2*-) production and expression of several NADPH oxidase subunits were increased by angiotensin II in FVB. These effects were markedly blunted in MRP1-/- vessels. The increase in O2*- production in FVB vessels caused by angiotensin II was largely inhibited by L-NAME, suggesting eNOS uncoupling. Accordingly, aortic tetrahydrobiopterin and levels of NO were decreased by angiotensin II in FVB but were unchanged in MRP1-/-. Finally, the hypertension caused by angiotensin II was markedly blunted in MRP1-/- mice (137+/-4 versus 158+/-6 mm Hg). CONCLUSION: MRP1 plays a crucial role in the genesis of multiple vascular abnormalities that accompany hypertension and its presence is essential for the hypertensive response to angiotensin II.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Angiotensina II , Aorta/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/deficiencia , Angiotensina II/farmacología , Animales , Aorta/metabolismo , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Presión Sanguínea , Endotelio Vascular/fisiopatología , Inhibidores Enzimáticos/farmacología , Disulfuro de Glutatión/metabolismo , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , NADPH Oxidasas/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vasodilatación
3.
Arterioscler Thromb Vasc Biol ; 27(1): 42-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17082491

RESUMEN

OBJECTIVE: The mechanisms responsible for maintaining the differentiated phenotype of adult vascular smooth muscle cells (VSMCs) are incompletely understood. Reactive oxygen species (ROS) have been implicated in VSMC differentiation, but the responsible sources are unknown. In this study, we investigated the role of Nox1 and Nox4-derived ROS in this process. METHODS AND RESULTS: Primary VSMCs were used to study the relationship between Nox homologues and differentiation markers such as smooth muscle alpha-actin (SM alpha-actin), smooth muscle myosin heavy chain (SM-MHC), heavy caldesmon, and calponin. We found that Nox4 and differentiation marker genes were downregulated from passage 1 to passage 6 to 12, whereas Nox1 was gradually upregulated. Nox4 co-localized with SM alpha-actin-based stress fibers in differentiated VSMC, and moved into focal adhesions in de-differentiated cells. siRNA against nox4 reduced NADPH-driven superoxide production in serum-deprived VSMCs and downregulated SM-alpha actin, SM-MHC, and calponin, as well as SM-alpha actin stress fibers. Nox1 depletion did not decrease these parameters. CONCLUSIONS: Nox4-derived ROS are critical to the maintenance of the differentiated phenotype of VSMCs. These findings highlight the importance of identifying the specific source of ROS involved in particular cellular functions when designing therapeutic interventions.


Asunto(s)
Diferenciación Celular/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Fenotipo , Ratas , Ratas Sprague-Dawley , Factor de Respuesta Sérica/metabolismo , Calponinas
4.
Cardiovasc Res ; 71(2): 216-25, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16616906

RESUMEN

Reactive oxygen species (ROS) have been shown to function as important signaling molecules in the cardiovascular system. Vascular smooth muscle cells (VSMCs) contain several sources of ROS, among which the NADPH oxidases are predominant. In VSMCs, ROS mediate many pathophysiological processes, such as growth, migration, apoptosis and secretion of inflammatory cytokines, as well as physiological processes, such as differentiation, by direct and indirect effects at multiple signaling levels. Therefore, it becomes critical to understand the different roles ROS play in the physiology and pathophysiology of VSMCs.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Angiotensina II/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Endotelio Vascular/metabolismo , Humanos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , NADPH Oxidasas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
5.
Circulation ; 105(12): 1429-35, 2002 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-11914250

RESUMEN

BACKGROUND: NAD(P)H oxidases are important sources of superoxide in the vasculature, the activity of which is associated with risk factors for human atherosclerosis. This study was designed to investigate the localization of superoxide production and the expression of the Nox family of NAD(P)H oxidase proteins (gp91phox, Nox1, and Nox4) in nonatherosclerotic and atherosclerotic human coronary arteries. METHODS AND RESULTS: In coronary artery segments from explanted human hearts, we examined intracellular superoxide production with dihydroethidium. In nonatherosclerotic coronary arteries, superoxide was present homogenously throughout the intima, media, and adventitia. In atherosclerotic arteries, there was an additional intense area of superoxide in the plaque shoulder, which is rich in macrophages and alpha-actin-positive cells. p22phox colocalized with gp91phox mainly in macrophages, whereas Nox4 was found only in nonphagocytic vascular cells. Expression of gp91phox and p22phox mRNA was associated with the severity of atherosclerosis. gp91phox correlated with the plaque macrophage content, whereas Nox4 correlated with the content of alpha-actin-positive cells. Nox1 expression was low both in human coronary arteries and isolated vascular cells. CONCLUSIONS: Several Nox proteins, including gp91phox and Nox4, may contribute to increased intracellular oxidative stress in human coronary atherosclerosis in a cell-specific manner and thus may be involved in the genesis and progression of human coronary atherosclerotic disease.


Asunto(s)
Arteriosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Proteínas de Transporte de Membrana , NADH NADPH Oxidorreductasas/biosíntesis , Superóxidos/metabolismo , Arteriosclerosis/patología , Células Cultivadas , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/química , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Insuficiencia Cardíaca/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , NADH NADPH Oxidorreductasas/genética , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Superóxidos/análisis
6.
Free Radic Biol Med ; 39(11): 1512-22, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16274886

RESUMEN

Modified low-density lipoprotein (LDL) induces reactive oxygen species (ROS) production by vascular cells. It is unknown if specific oxidized components in these LDL particles such as oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) can stimulate ROS production. Bovine aortic endothelial cells (BAEC) were incubated with ox-PAPC (50 microg/ml). At 4 h, ox-PAPC significantly enhanced the rate of O2- production. Pretreatment of BAEC in glucose-free Dulbecco's modified Eagle's medium plus 10 mM 2-deoxyglucose (2-DOG), the latter being an antimetabolite that blocks NADPH production by the pentose shunt, significantly reduced the rate of O2- production. The intensity of NAD(P)H autofluorescence decreased by 28 +/- 12% in BAEC incubated with ox-PAPC compared to untreated cells, with a further decrease in the presence of 2-DOG. Ox-PAPC also increased Nox4 mRNA expression by 2.4-fold +/- 0.1 while pretreatment of BAEC with the small interfering RNA (siNox4) attenuated Nox4 RNA expression. Ox-PAPC further reduced the level of glutathione while pretreatment with apocynin (100 microM) restored the GSH level (control = 22.54 +/- 0.23, GSH = 18.06 +/- 0.98, apocynin = 22.55 +/- 0.60, ox-PAPC + apocynin = 21.17 +/- 0.36 nmol/10(6) cells). Treatment with ox-PAPC also increased MMP-2 mRNA expression accompanied by a 1.5-fold increase in MMP-2 activity. Ox-PAPC induced vascular endothelial OO2-(.) production that appears to be mediated largely by NADPH oxidase activity.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , NADPH Oxidasas/fisiología , Fosfatidilcolinas/farmacología , Superóxidos/metabolismo , Animales , Bovinos , Células Cultivadas , Regulación hacia Abajo , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , NADP/metabolismo , Espectrometría de Fluorescencia , Regulación hacia Arriba
7.
Arterioscler Thromb Vasc Biol ; 24(4): 677-83, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14670934

RESUMEN

OBJECTIVE: Reactive oxygen species (ROS) that act as signaling molecules in vascular smooth muscle cells (VSMC) and contribute to growth, hypertrophy, and migration in atherogenesis are produced by multi-subunit NAD(P)H oxidases. Nox1 and Nox4, two homologues to the phagocytic NAD(P)H subunit gp91phox, both generate ROS in VSMC but differ in their response to growth factors. We hypothesize that the opposing functions of Nox1 and Nox4 are reflected in their differential subcellular locations. METHODS AND RESULTS: We used immunofluorescence to visualize the NAD(P)H subunits Nox1, Nox4, and p22phox in cultured rat and human VSMC. Optical sectioning using confocal microscopy showed that Nox1 is co-localized with caveolin in punctate patches on the surface and along the cellular margins, whereas Nox4 is co-localized with vinculin in focal adhesions. These immunocytochemical distributions are supported by membrane fractionation experiments. Interestingly, p22phox, a membrane subunit that interacts with the Nox proteins, is found in surface labeling and in focal adhesions in patterns similar to Nox1 and Nox4, respectively. CONCLUSIONS: The differential roles of Nox1 and Nox4 in VSMC may be correlated with their differential compartmentalization in specific signaling domains in the membrane and focal adhesions.


Asunto(s)
Caveolas/enzimología , Adhesiones Focales/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , NADH NADPH Oxidorreductasas/análisis , NADPH Oxidasas/análisis , Animales , Caveolina 1 , Caveolinas/análisis , División Celular , Fraccionamiento Celular , Células Cultivadas/enzimología , Células Cultivadas/ultraestructura , Senescencia Celular , Citoesqueleto/metabolismo , Humanos , Sustancias Macromoleculares , Masculino , Proteínas de Transporte de Membrana/análisis , Microscopía Confocal , Microscopía Fluorescente , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/ultraestructura , NADH NADPH Oxidorreductasas/fisiología , NADPH Deshidrogenasa/análisis , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/fisiología , Oxidación-Reducción , Fosfoproteínas/análisis , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Vinculina/análisis
8.
J Biol Chem ; 283(13): 8211-7, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18195003

RESUMEN

Human cardiac fibroblasts are protected from oxidative stress triggered by inflammation after myocardial injury (Li, P. F., Dietz, R., and von Harsdorf, R. (1999) FEBS Lett. 448, 206-210) by expressing potent antioxidant defenses such as superoxide dismutases, catalases, glutathione-peroxidases, and peroxiredoxins. Recently the transcription factor FOXO3A has been shown to increase resistance to oxidative stress by up-regulation of mitochondrial superoxide dismutase and peroxisomal catalase (Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., and Burgering, B. M. (2002) Nature 419, 316-321; Nemoto, S., and Finkel, T. (2002) Science 295, 2450-2452). We hypothesized that FOXO3A also regulates the expression of Prx III, the mitochondrial peroxiredoxin, in human cardiac fibroblasts. We found that depletion of FOXO3A leads to a dramatic reduction of Prx III mRNA and protein in serum-deprived human cardiac fibroblasts. These data suggest that endogenous FOXO3A is necessary for base-line expression of Prx III. Next, we identified two putative FOXO3A DNA binding sites in Prx III promoter at -267 and -244 nucleotides relative to the start codon. We demonstrated that both sequences are required for binding of endogenous FOXO3A to the Prx III promoter by performing electromobility shift assays and chromatin immunoprecipitation assays. Inhibition of endogenous FOXO3A by insulin growth factor 1 prevented binding of FOXO3A to Prx III promoter. In contrast, overexpression of FOXO3A increased Prx III promoter activity. Furthermore, depletion of Prx III was associated with enhanced apoptosis and oxidative stress after serum deprivation. We conclude that FOXO3A mediates Prx III expression, and this may play a critical role in the resistance to oxidative stress in cardiac fibroblasts.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Miocardio/metabolismo , Peroxirredoxinas/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Medio de Cultivo Libre de Suero , Fibroblastos , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Corazón/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Miocardio/citología , Estrés Oxidativo , Peroxirredoxinas/genética , Regiones Promotoras Genéticas/genética
9.
Am J Respir Cell Mol Biol ; 34(3): 314-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16284359

RESUMEN

Alcohol abuse increases the incidence of acute respiratory distress syndrome and causes oxidative stress and cellular dysfunction in the lung. The mechanisms of ethanol (EtOH)-induced oxidative stress in the lung remain to be defined. Chronic alcohol ingestion has been associated with increased renin-angiotensin system (RAS) activity. Therefore, the current study investigated the ability of lisinopril, an angiotensin-converting enzyme (ACE) inhibitor, to modulate oxidative stress in the lung after chronic EtOH ingestion in a well-established rat model. Male Sprague-Dawley rats were fed liquid diets containing EtOH (36% of calories) or maltose-dextrin as an isocaloric substitution for EtOH (Control) for 6 wk. Selected animals were also treated with lisinopril (3 mg/liter) for 6 wk. Chronic EtOH ingestion increased bronchoalveolar lavage fluid glutathione disulfide levels and superoxide formation in lung parenchyma. These effects of EtOH were attenuated by lisinopril treatment. Chronic EtOH ingestion failed to increase ACE expression or angiotensin II levels in lung homogenates, but increased angiotensinogen, angiotensin II type 1 and type 2 receptor levels, and ACE activity. Chronic EtOH ingestion also increased the levels of the NADPH oxidase subunit, gp91phox, an effect that was attenuated by lisinopril, but had no effect on lung p22phox or p47phox levels. These findings suggest that EtOH-mediated RAS activation plays an important role in pulmonary oxidative stress and provide new insights into mechanisms by which EtOH causes oxidative stress in the lung and potential strategies of lung protection through ACE inhibition.


Asunto(s)
Etanol/farmacología , Pulmón/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo , Angiotensina II/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Angiotensinógeno/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Etanol/administración & dosificación , Disulfuro de Glutatión/metabolismo , Lisinopril/farmacología , Pulmón/metabolismo , Pulmón/patología , Masculino , Proteínas de Transporte de Membrana/metabolismo , NADPH Oxidasa 2 , Estrés Oxidativo , Peptidil-Dipeptidasa A/biosíntesis , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/fisiología
10.
Am J Physiol Regul Integr Comp Physiol ; 285(2): R277-97, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12855411

RESUMEN

The importance of reactive oxygen species (ROS) in vascular physiology and pathology is becoming increasingly evident. All cell types in the vascular wall produce ROS derived from superoxide-generating protein complexes similar to the leukocyte NADPH oxidase. Specific features of the vascular enzymes include constitutive and inducible activities, substrate specificity, and intracellular superoxide production. Most phagocyte enzyme subunits are found in vascular cells, including the catalytic gp91phox (aka, nox2), which was the earliest member of the newly discovered nox family. However, smooth muscle frequently expresses nox1 rather than gp91phox, and nox4 is additionally present in all cell types. In cell culture, agonists increase ROS production by activating multiple signals, including protein kinase C and Rac, and by upregulating oxidase subunits. The oxidases are also upregulated in vascular disease and are involved in the development of atherosclerosis and a significant part of angiotensin II-induced hypertension, possibly via nox1 and nox4. Likewise, enhanced vascular oxidase activity is associated with diabetes. Therefore, members of this enzyme family appear to be important in vascular biology and disease and constitute promising targets for future therapeutic interventions.


Asunto(s)
NADPH Oxidasas/metabolismo , Animales , Arteriosclerosis/enzimología , Sistema Cardiovascular/enzimología , Diabetes Mellitus/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Hipertensión/enzimología , NADPH Oxidasas/química , NADPH Oxidasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda