Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ann Bot ; 128(1): 97-113, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33821947

RESUMEN

BACKGROUND AND AIMS: Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception. METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented. KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone. CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.


Asunto(s)
Oryza , Sorghum , Aclimatación , Flores , Humanos , Fotoperiodo , Temperatura
2.
Ann Bot ; 101(4): 579-94, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18230624

RESUMEN

BACKGROUND AND AIMS: West African sorghum (Sorghum bicolor) varieties are generally highly photoperiod-sensitive, which is a necessary adaptation to the variable onset date of the rainy season and the variable dates of sowing in the savannah zone. Depending on sowing date, plants can produce from 12 to >40 leaves on the main culm, with height varying from 1 m to more than 5 m. The present study aimed to better understand the complex phenology of these variables. METHODS: A 2-year series of monthly sowings of three West African sorghum varieties was conducted near Bamako, Mali. Drought stress was avoided by supplemental irrigation. Rate of initiation of primordia at the stem apex was recorded, together with rate of leaf emergence and increase in plant height. KEY RESULTS: Leaf initiation and appearance rates (plastochron(-1) and phyllochron(-1)) were constant for a given sowing date in cases where less than 20 leaves were produced (generally observed with late sowing dates). In contrast, rates were bilinear for early sowing dates, for which plants produced more than 20 leaves. The secondary rates, which occurred from the 20th leaf onwards, were only half of the initial rate. Plastochron and phyllochron showed large variations among sowing dates, and were correlated with the rate of plant height increase. The initial plastochron and phyllochron were positively correlated with soil temperature and negatively correlated with both day length and day-to-day change of day length prevailing at plant emergence, but these factors explained only half of the variation observed. CONCLUSIONS: Although they belong to different genetic groups and have different height and photoperiod sensitivity, the three varieties studied exhibited similar response patterns of development rates among phenological phases and seasons, with the local landrace showing the greatest variation due to its longer vegetative phase and longer stem internodes. The possible adaptive advantages in African savannah environments of bilinear development rates and the associated limitation in height increase are discussed.


Asunto(s)
Biomasa , Variación Genética , Fotoperiodo , Hojas de la Planta/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo , Genotipo , Sorghum/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda