Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 18(5): e1010485, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587473

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease. When IFN-I signaling was blocked by antibody, MAVS-deficient mice lost significant weight, but were uniformly protected from lethal disease, whereas all control mice succumbed to infection. Cytokine activity in the infected MAVS-deficient mice was markedly blunted. Subsequent investigation revealed that CCHFV infected mice lacking TNF-α receptor signaling (TNFA-R-deficient), but not IL-6 or IL-1 activity, had more limited liver injury and were largely protected from lethal outcomes. Treatment of mice with an anti-TNF-α neutralizing antibody also conferred partial protection in a post-virus exposure setting. Additionally, we found that a disease causing, but non-lethal strain of CCHFV produced more blunted inflammatory cytokine responses compared to a lethal strain in mice. Our work reveals that MAVS activation and cytokine production both contribute to CCHFV pathogenesis, potentially identifying new therapeutic targets to treat this disease.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Citocinas , Modelos Animales de Enfermedad , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Inhibidores del Factor de Necrosis Tumoral
2.
J Gen Virol ; 102(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33961540

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.


Asunto(s)
COVID-19/terapia , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/virología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización Pasiva , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Coronavirus/genética , Receptores de Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Carga Viral , Replicación Viral , Sueroterapia para COVID-19
3.
J Med Primatol ; 46(2): 42-47, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28145579

RESUMEN

BACKGROUND: Myeloid sarcoma is a rare manifestation of myeloproliferative disorder defined as an extramedullary mass composed of myeloid precursor cells. A 9-month old, female, common marmoset (Callithrix jacchus) had increased respiratory effort. METHODS: A complete necropsy with histology and immunohistochemistry was performed. RESULTS: The thymus was replaced by a firm, gray-tan mass with a faint green tint, filling over 50% of the thoracic cavity. Sheets of granulocytes, lymphoid cells, nucleated erythrocytes, megakaryocytes, and hematopoietic precursors of indeterminate cell lineage replaced the thymus, perithymic connective tissue, mediastinal adipose tissues, epicardium, and much of the myocardium. The cells demonstrated diffuse strong cytoplasmic immunoreactivity for lysozyme, and strong, multifocal membranous immunoreactivity for CD117. CONCLUSION: We report the first case of a myeloid sarcoma in a common marmoset (C. jacchus), similar to reported human cases of mediastinal myeloid sarcoma, and present a review of myeloproliferative diseases from the veterinary literature.


Asunto(s)
Callithrix , Neoplasias del Mediastino/veterinaria , Enfermedades de los Monos/diagnóstico , Enfermedades de los Monos/etiología , Sarcoma Mieloide/veterinaria , Animales , Femenino , Neoplasias del Mediastino/diagnóstico , Neoplasias del Mediastino/etiología , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/etiología
4.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409240

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Femenino , Animales , Ratones , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas de la Nucleocápside/metabolismo , Anticuerpos Monoclonales , Fiebre Hemorrágica de Crimea/prevención & control , Glicoproteínas/metabolismo , Anticuerpos Antivirales
5.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391232

RESUMEN

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Asunto(s)
Mpox , Orthopoxvirus , Viruela , Virus de la Viruela , Animales , Ratones , Humanos , Nucleósidos/uso terapéutico , Viruela/tratamiento farmacológico , Viruela/prevención & control , Modelos Animales de Enfermedad
6.
PLoS Negl Trop Dis ; 17(9): e0011620, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37682988

RESUMEN

Numerous arenaviruses have been identified throughout the Americas and a subset of these viruses cause viral hemorrhagic fever in humans. This study compared the pathology and viral RNA distribution in Hartley guinea pigs challenged with two human-disease causing New World arenaviruses, Junin virus (JUNV) or Guanarito virus (GTOV). Histopathologic analysis and RNA in situ hybridization revealed similar pathology and viral RNA distribution for both groups of animals challenged with either JUNV or GTOV on days 3, 7, 10 and 12 post exposure (PE). Gross lesions were first observed on day 7 and primarily involved the lungs and liver. The most severe histologic lesions occurred in the lymph nodes, spleen, and thymus and included lymphoid depletion and necrosis which increased in severity over time. Extensive necrosis was also observed in the bone marrow on day 12. Minimal to mild inflammation with and without necrosis was observed in the choroid plexus of the brain, choroid of the eye, intestinal tract, lung and adrenal gland. Significant liver lesions were rare, consisting predominantly of hepatocyte vacuolation. Viral RNA labeling was identified in nearly all organs examined, was often extensive in certain organs and generally increased over time starting on day 7. Our data demonstrate the guinea pig may serve as a useful model to study New World arenavirus infection in humans and for the evaluation and development of medical countermeasures.


Asunto(s)
Arenavirus del Nuevo Mundo , Virus Junin , Humanos , Cobayas , Animales , ARN Viral/genética , Hígado , Encéfalo
7.
Hum Vaccin Immunother ; 19(3): 2277083, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37975637

RESUMEN

Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.


Asunto(s)
Francisella tularensis , Tularemia , Ratas , Animales , Ratones , Francisella tularensis/genética , Tularemia/prevención & control , Ratas Endogámicas F344 , Vacunas Bacterianas , Vacunas Atenuadas , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
8.
PLoS One ; 17(2): e0263834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143571

RESUMEN

Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×105 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.


Asunto(s)
Encefalitis Viral/patología , Infecciones por Henipavirus/patología , Enfermedades Pulmonares/virología , Virus Nipah/patogenicidad , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Enfermedades Pulmonares/patología , Malasia , Masculino , Virus Nipah/clasificación
9.
mBio ; 13(1): e0290621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073750

RESUMEN

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Cricetinae , Humanos , COVID-19/patología , Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A , Pulmón/patología , Ratones Transgénicos , Modelos Animales de Enfermedad
10.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32841215

RESUMEN

The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs.


Asunto(s)
Causas de Muerte , Infecciones por Coronavirus/patología , Progresión de la Enfermedad , Peptidil-Dipeptidasa A/genética , Neumonía Viral/patología , Síndrome Respiratorio Agudo Grave/patología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Infecciones por Coronavirus/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Pandemias , Neumonía Viral/fisiopatología , Síndrome Respiratorio Agudo Grave/fisiopatología , Índice de Severidad de la Enfermedad , Tasa de Supervivencia , Replicación Viral/genética
11.
US Army Med Dep J ; : 28-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23277442

RESUMEN

Military working dogs are often trained and/or work in locations where the potential for snake bites is increased. Knowledge of the local venomous snakes, the effects of their venom, and appropriate initial stabilization is essential for the US Army Veterinary Corps officer (VCO). As military practitioners, VCOs are uniquely situated to benefit from collaboration with other military assets for air evacuation and treatment of their patients. A recent clinical case of envenomation is presented, along with a review of the most current literature regarding treatment of envenomation in veterinary patients.


Asunto(s)
Antivenenos/uso terapéutico , Venenos de Crotálidos/toxicidad , Enfermedades de los Perros/terapia , Mordeduras de Serpientes/veterinaria , Viperidae , Administración Intravenosa/veterinaria , Animales , Venenos de Crotálidos/análisis , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/fisiopatología , Perros , Miembro Anterior/patología , North Carolina , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/fisiopatología , Mordeduras de Serpientes/terapia , Resultado del Tratamiento , Servicio Veterinario Militar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda