Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Brain ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

2.
Nature ; 568(7751): E4, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30918409

RESUMEN

In this Letter, Dominic Grün and Sagar have been added to the author list (affiliated with Max-Planck-Institute of Immunology and Epigenetics (MPI-IE), Freiburg, Germany). The author list, 'Author contribution' and 'Acknowledgements' sections have been corrected online. See accompanying Amendment.

3.
Nature ; 566(7744): 388-392, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760929

RESUMEN

Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system1-4. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.


Asunto(s)
Microglía/clasificación , Microglía/citología , Análisis de la Célula Individual , Análisis Espacio-Temporal , Animales , Encéfalo/citología , Encéfalo/patología , Estudios de Casos y Controles , Separación Celular , Enfermedades Desmielinizantes/patología , Femenino , Humanos , Cinética , Masculino , Ratones , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología
4.
Epilepsia ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837755

RESUMEN

OBJECTIVE: Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS: In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS: Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE: MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38613674

RESUMEN

Device aided therapies (DAT) comprising the intrajejunal administration of levodopa/carbidopa intestinal gel (LCIG) and levodopa/carbidopa/entacapone intestinal gel (LECIG), the continuous subcutaneous application of foslevodopa/foscarbidopa or apomorphine infusion (CSAI) and deep brain stimulation (DBS) are used to treat Parkinson's disease with insufficient symptom alleviation under intensified pharmacotherapy. These DAT significantly differ in their efficacy profiles, indication, invasiveness, contraindications, and potential side effects. Usually, the evaluation of all these procedures is conducted simultaneously at the same point in time. However, as disease progression and symptom burden is extremely heterogeneous, clinical experience shows that patients reach the individual milestones for a certain therapy at different points in their disease course. Therefore, advocating for an individualized therapy evaluation for each DAT, requiring an ongoing evaluation. This necessitates that, during each consultation, the current symptomatology should be analyzed, and the potential suitability for a DAT be assessed. This work represents a critical interdisciplinary appraisal of these therapies in terms of their individual profiles and compares these DAT regarding contraindications, periprocedural considerations as well as their efficacy regarding motor- and non-motor deficits, supporting a personalized approach.

6.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38086346

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Encéfalo , Trastornos Mentales/terapia , Enfermedad de Parkinson/terapia
7.
Acta Neurochir (Wien) ; 166(1): 145, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514531

RESUMEN

PURPOSE: This study is to report some preliminary surgical considerations and outcomes after the first implantations of a new and commercially available implantable epicranial stimulation device for focal epilepsy. METHODS: We retrospectively analyzed data from clinical notes. Outcome parameters were as follows: wound healing, surgery time, and adverse events. RESULTS: Five patients were included (17-52 y/o; 3 female). Epicranial systems were uneventfully implanted under neuronavigation guidance. Some minor adverse events occurred. Wound healing in primary intention was seen in all patients. Out of these surgeries, certain concepts were developed: Skin incisions had to be significantly larger than expected. S-shaped incisions appeared to be a good choice in typical locations behind the hairline. Preoperative discussions between neurologist and neurosurgeon are mandatory in order to allow for the optimal coverage of the epileptogenic zone with the electrode geometry. CONCLUSION: In this first small series, we were able to show safe implantation of this new epicranial stimulation device. The use of neuronavigation is strongly recommended. The procedure is simple but not trivial and ideally belongs in the hands of a neurosurgeon.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Femenino , Epilepsia/cirugía , Estudios Retrospectivos , Epilepsia Refractaria/cirugía , Corteza Cerebral , Electrodos Implantados , Resultado del Tratamiento
8.
Artículo en Alemán | MEDLINE | ID: mdl-38346694

RESUMEN

In the therapy of Parkinson̓s disease, both the intrajejunal administration of Levodopa/Carbidopa Intestinal Gel (LCIG) and, more recently, Levodopa/Carbidopa/Entacapone Intestinal Gel (LECIG), as well as deep brain stimulation (DBS), are employed. These approaches differ significantly in their efficacy and side effect profiles, as well as the timing of their use. Yet, the initiation of therapy for both methods is often simultaneously considered when patients have reached an advanced stage of the disease. From the authors' perspective, however, patients may reach the milestones for the indication of one of these respective treatments at different points in the course of the disease. Individual disease progression plays a pivotal role in this regard. The concept that all patients become candidates for a specific treatment at a predefined time appears erroneous to the authors. In the context of this review, therefore, the therapeutic modalities are presented in terms of their efficacy for different symptoms, the notion of simultaneous timing of their initiation is questioned, and an individualized therapy evaluation is derived, with a focus on quality of life and participation.

9.
Mov Disord ; 38(9): 1736-1742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358761

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES: We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS: The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS: Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION: DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Parálisis Cerebral , Estimulación Encefálica Profunda , Discinesias , Trastornos del Movimiento , Humanos , Niño , Adolescente , Parálisis Cerebral/terapia , Estudios de Seguimiento , Estudios Prospectivos , Discinesias/etiología , Discinesias/terapia , Globo Pálido , Trastornos del Movimiento/terapia , Resultado del Tratamiento
10.
Neuromodulation ; 26(2): 302-309, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36424266

RESUMEN

INTRODUCTION: Recent developments in the postoperative evaluation of deep brain stimulation surgery on the group level warrant the detection of achieved electrode positions based on postoperative imaging. Computed tomography (CT) is a frequently used imaging modality, but because of its idiosyncrasies (high spatial accuracy at low soft tissue resolution), it has not been sufficient for the parallel determination of electrode position and details of the surrounding brain anatomy (nuclei). The common solution is rigid fusion of CT images and magnetic resonance (MR) images, which have much better soft tissue contrast and allow accurate normalization into template spaces. Here, we explored a deep-learning approach to directly relate positions (usually the lead position) in postoperative CT images to the native anatomy of the midbrain and group space. MATERIALS AND METHODS: Deep learning is used to create derived tissue contrasts (white matter, gray matter, cerebrospinal fluid, brainstem nuclei) based on the CT image; that is, a convolution neural network (CNN) takes solely the raw CT image as input and outputs several tissue probability maps. The ground truth is based on coregistrations with MR contrasts. The tissue probability maps are then used to either rigidly coregister or normalize the CT image in a deformable way to group space. The CNN was trained in 220 patients and tested in a set of 80 patients. RESULTS: Rigorous validation of such an approach is difficult because of the lack of ground truth. We examined the agreements between the classical and proposed approaches and considered the spread of implantation locations across a group of identically implanted subjects, which serves as an indicator of the accuracy of the lead localization procedure. The proposed procedure agrees well with current magnetic resonance imaging-based techniques, and the spread is comparable or even lower. CONCLUSIONS: Postoperative CT imaging alone is sufficient for accurate localization of the midbrain nuclei and normalization to the group space. In the context of group analysis, it seems sufficient to have a single postoperative CT image of good quality for inclusion. The proposed approach will allow researchers and clinicians to include cases that were not previously suitable for analysis.


Asunto(s)
Estimulación Encefálica Profunda , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos
11.
Neuroimage ; 262: 119551, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948264

RESUMEN

OBJECTIVE: Deep Brain Stimulation (DBS) in the Anterior Nucleus of the Thalamus (ANT) has been shown to be a safe and efficacious treatment option for patients with Drug-Resitant focal Epilepsy (DRE). The ANT has been selected frequently in open and controlled studies for bilateral DBS. There is a substantial variability in ANT-DBS outcomes which is not fully understood. These outcomes might not be explained by the target location alone but potentially depend on the connectivity of the mere stimulation site with the epilepsy onset-associated brain regions. The likely sub-components of this anatomy are fiber pathways which penetrate or touch the ANT region and constitute a complex and dense fiber network which has not been described so far. A detailed characterization of this ANT associated fiber anatomy may therefore help to identify which areas are associated with positive or negative outcomes of ANT-DBS. Furthermore, prediction properties in individual ANT-DBS cases might be tested. In this work we aim to generate an anatomically detailed map of candidate fiber structures which might in the future lead to a holistic image of structural connectivity of the ANT region. METHODS: To resolve the various components of the complex fiber network connected to the ANT we used a synthetic pathway reconstruction method that combines anatomical fiber tracking with dMRI-based tractography and iteratively created an anatomical high-resolution fiber map representing the most important bundles related to the ANT. RESULTS: The anatomically detailed 3D representation of the fibers in the ANT region generated with the synthetic pathway reconstruction method incorporates multiple anatomically defined fiber bundles with their course, orientation, connectivity and relative strength. Distinctive positions within the ANT region have a different hierarchical profile with respect to the stimulation-activated fiber bundles. This detailed connectivity map, which is embedded into the topographic map of the MNI brain, provides novel opportunities to analyze the outcomes of the ANT-DBS studies. CONCLUSION: Our synthetic reconstruction method provides the first anatomically realistic fiber pathway map in the human ANT region incorporating histological and structural MRI data. We propose that this complex ANT fiber network can be used for detailed analysis of the outcomes of DBS studies and potentially for visualization during the stimulation planning procedures. The connectivity map might also facilitate surgical planning and will help to simulate the complex ANT connectivity. Possible activation patterns that may be elicited by electrodes in different positions in the ANT region will help to understand clinically diverse outcomes based on this new dense fiber network map. As a consequence this work might in the future help to improve individual outcomes in ANT-DBS.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia , Encéfalo , Estimulación Encefálica Profunda/métodos , Epilepsia/terapia , Humanos , Imagen por Resonancia Magnética
12.
J Neurosci Res ; 100(3): 897-911, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35088434

RESUMEN

Major depressive disorder is one of the most common mental disorders, and more than 300 million of people suffer from depression worldwide. Recent clinical trials indicate that deep brain stimulation of the superolateral medial forebrain bundle (mfb) can have rapid and long-term antidepressant effects in patients with treatment-resistant depression. However, the mechanisms of action are elusive. In this study, using female rats, we demonstrate the antidepressant effects of selective optogenetic stimulation of the ventral tegmental area's dopaminergic (DA) neurons passing through the mfb and compare different stimulation patterns. Chronic mild unpredictable stress (CMUS) induced depressive-like, but not anxiety-like phenotype. Short-term and long-term stimulation demonstrated antidepressant effect (OSST) and improved anxiolytic effect (EPM), while long-term stimulation during CMUS induction prevented depressive-like behavior (OSST and USV) and improved anxiolytic effect (EPM). The results highlight that long-term accumulative stimulation on DA pathways is required for antidepressant and anxiolytic effect.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Mayor , Animales , Estimulación Encefálica Profunda/métodos , Depresión/terapia , Trastorno Depresivo Mayor/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Humanos , Optogenética , Ratas , Roedores/metabolismo , Área Tegmental Ventral/fisiología
13.
Mov Disord ; 37(4): 799-811, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34967053

RESUMEN

BACKGROUND: Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity. OBJECTIVE: The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life. METHODS: The method used is a prospective, single-arm, multicenter study. The primary endpoint is improvement in quality of life (CPCHILD [Caregiver Priorities & Child Health Index of Life with Disabilities]) from baseline to 12 months under therapeutic stimulation. The main key secondary outcomes are changes in Burke-Fahn-Marsden Dystonia Rating Scale, Dyskinesia Impairment Scale, Gross Motor Function Measure-66, Canadian Occupational Performance Measure (COPM), and Short-Form (SF)-36. After 12 months, patients were randomly assigned to a blinded crossover to receive active or sham stimulation for 24 hours each. Severity of dystonia and chorea were blindly rated. Safety was assessed throughout. The trial was registered at ClinicalTrials.gov, number NCT02097693. RESULTS: Sixteen patients (age: 13.4 ± 2.9 years) were recruited by seven clinical sites. Primary outcome at 12-month follow-up is as follows: mean CPCHILD increased by 4.2 ± 10.4 points (95% CI [confidence interval] -1.3 to 9.7; P = 0.125); among secondary outcomes: improvement in COPM performance measure of 1.1 ± 1.5 points (95% CI 0.2 to 1.9; P = 0.02) and in the SF-36 physical health component by 5.1 ± 6.2 points (95% CI 0.7 to 9.6; P = 0.028). Otherwise, there are no significant changes. CONCLUSION: Evidence to recommend DBS as routine treatment to improve quality of life in pediatric patients with dyskinetic cerebral palsy is not yet sufficient. Extended follow-up in larger cohorts will determine the impact of DBS further to guide treatment decisions in these often severely disabled patients. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Parálisis Cerebral , Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Adolescente , Canadá , Parálisis Cerebral/terapia , Niño , Estimulación Encefálica Profunda/métodos , Globo Pálido , Humanos , Estudios Prospectivos , Calidad de Vida , Resultado del Tratamiento
14.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144712

RESUMEN

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo/terapia , Humanos , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
15.
Neurosurg Rev ; 45(2): 1731-1739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34914024

RESUMEN

Histopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a "plug-and-play" manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Encefálicas/patología , Humanos , Procedimientos Neuroquirúrgicos/métodos , Quirófanos , Espectrometría Raman/métodos , Flujo de Trabajo
16.
Neurosurg Rev ; 45(2): 1721-1729, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34890000

RESUMEN

Intraoperative histopathological examinations are routinely performed to provide neurosurgeons with information about the entity of tumor tissue. Here, we quantified the neuropathological interpretability of stimulated Raman histology (SRH) acquired using a Raman laser imaging system in a routine clinical setting without any specialized training or prior experience. Stimulated Raman scattering microscopy was performed on 117 samples of pathological tissue from 73 cases of brain and spine tumor surgeries. A board-certified neuropathologist - novice in the interpretation of SRH - assessed image quality by scoring subjective tumor infiltration and stated a diagnosis based on the SRH images. The diagnostic accuracy was determined by comparison to frozen hematoxylin-eosin (H&E)-stained sections and the ground truth defined as the definitive neuropathological diagnosis. The overall SRH imaging quality was rated high with the detection of tumor cells classified as inconclusive in only 4.2% of all images. The accuracy of neuropathological diagnosis based on SRH images was 87.7% and was non-inferior to the current standard of fast frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). We found a substantial diagnostic correlation between SRH-based neuropathological diagnosis and H&E-stained frozen sections (κ = 0.8). The interpretability of intraoperative SRH imaging was demonstrated to be equivalent to the current standard method of H&E-stained frozen sections. Further research using this label-free innovative alternative vs. conventional staining is required to determine to which extent SRH-based intraoperative decision-making can be streamlined in order to facilitate the advancement of surgical neurooncology.


Asunto(s)
Neoplasias Encefálicas , Neuropatología , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Humanos
17.
Acta Neurochir (Wien) ; 164(9): 2303-2307, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35499574

RESUMEN

Here we describe therapeutic results in a female patient who underwent bilateral slMFB DBS for OCD. During a 35-month long course of stimulation, she suffered from stimulation-induced dyskinesia of her right leg which we interpreted as co-stimulation of the adjacent anteromedial subthalamic nucleus (amSTN). After reprogramming to steer the stimulation away from the amSTN medial into the direction of the mesencephalic ventral tegmentum (MVT which contains the ventral tegmental area, VTA), the dyskinesias disappeared. Remarkably, anti-OCD efficacy in the presented patient was preserved and achieved with a bilateral stimulation which by our imaging study fully avoided the amSTN.


Asunto(s)
Estimulación Encefálica Profunda , Discinesias , Trastorno Obsesivo Compulsivo , Núcleo Subtalámico , Estimulación Encefálica Profunda/métodos , Discinesias/etiología , Discinesias/terapia , Femenino , Humanos , Trastorno Obsesivo Compulsivo/terapia
18.
Neuroimage ; 226: 117483, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271269

RESUMEN

Fiber tractography based on diffusion-weighted MRI provides a non-invasive characterization of the structural connectivity of the human brain at the macroscopic level. Quantification of structural connectivity strength is challenging and mainly reduced to "streamline counting" methods. These are however highly dependent on the topology of the connectome and the particular specifications for seeding and filtering, which limits their intra-subject reproducibility across repeated measurements and, in consequence, also confines their validity. Here we propose a novel method for increasing the intra-subject reproducibility of quantitative estimates of structural connectivity strength. To this end, the connectome is described by a large matrix in positional-orientational space and reduced by Principal Component Analysis to obtain the main connectivity "modes". It was found that the proposed method is quite robust to structural variability of the data.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Vías Nerviosas/anatomía & histología , Algoritmos , Imagen de Difusión Tensora/métodos , Humanos , Análisis de Componente Principal/métodos
19.
Eur J Neurosci ; 53(1): 89-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931064

RESUMEN

Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Animales , Humanos , Haz Prosencefálico Medial , Trastornos Mentales/terapia , Motivación , Recompensa
20.
Hum Brain Mapp ; 42(8): 2309-2321, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33638289

RESUMEN

The visualization of diffusion MRI related properties in a comprehensive way is still a challenging problem. We propose a simple visualization technique to give neuroradiologists and neurosurgeons a more direct and personalized view of relevant connectivity patterns estimated from clinically feasible diffusion MRI. The approach, named SPECTRE (Subject sPEcific brain Connectivity display in the Target REgion), is based on tract-weighted imaging, where diffusion MRI streamlines are used to aggregate information from a different MRI contrast. Instead of using native MRI contrasts, we propose to use continuous template information as the underlying contrast for aggregation. In this respect, the SPECTRE approach is complementary to normative approaches where connectivity information is warped from the group level to subject space by anatomical registration. For the purpose of demonstration, we focus the presentation of the SPECTRE approach on the visualization of connectivity patterns in the midbrain regions at the level of subthalamic nucleus due to its importance for deep brain stimulation. The proposed SPECTRE maps are investigated with respect to plausibility, robustness, and test-retest reproducibility. Clear dependencies of reliability measures with respect to the underlying tracking algorithms are observed.


Asunto(s)
Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Núcleo Subtalámico , Adulto , Visualización de Datos , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda