Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34407544

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
2.
Mol Biol Rep ; 49(4): 3225-3236, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35066770

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are a recently discovered neutrophil defense mechanism which modulates several inflammatory conditions contributing to metabolic profile alterations. Therefore, the present study aimed to evaluate the production of NETs in obese patients and mice, verifying the possible mechanisms associated with the release of NETs by the adipose tissue. METHODS AND RESULTS: The present study investigated NETs production in human adipose tissue and also showing the neutrophils using intravital microscopy in mouse epididymal adipose tissue. Blood and white adipose tissues were obtained from eutrophic and obese individuals and from mice. Lipid, glycemic and leukocyte profiles were evaluated, as well as the levels of NETs and its markers. Bioinformatics and proteomics analyses were performed and the identified key proteins were measured. The main findings showed that the inflammatory markers interleukin-8 (IL-8), heat shock protein 90 (HSP90) and the E1 heat shock protein family (HSPE1) can be modulated by the NETs levels in obesity. Obesity has also been associated with increased cholesterol, glucose intolerance, ionic calcium and NETs. We also observed an increase in catalase and a decreased superoxide dismutase activity. Bioinformatics and proteomics analyses revealed that IL-8, HSP90 and HSPE1 were associated with obesity, inflammation and NETs release. CONCLUSIONS: In conclusion, the present study shows an increase in NETs production during obesity associated with important inflammatory markers in adipose.


Asunto(s)
Trampas Extracelulares , Tejido Adiposo/metabolismo , Animales , Trampas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Neutrófilos/metabolismo , Obesidad/metabolismo
3.
J Infect Dis ; 219(12): 2015-2025, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30715407

RESUMEN

Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975-1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.


Asunto(s)
Encefalitis/metabolismo , Infecciones por Flavivirus/metabolismo , Flavivirus/patogenicidad , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Encéfalo , Brasil , Encefalitis/virología , Femenino , Infecciones por Flavivirus/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Crit Care ; 23(1): 113, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961634

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. METHODS: Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. RESULTS: Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. CONCLUSION: This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis.


Asunto(s)
Trampas Extracelulares/microbiología , Sepsis/terapia , Animales , Carga Bacteriana/métodos , Brasil , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL/sangre , Ratones Endogámicos C57BL/microbiología , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/patología , Sepsis/mortalidad , Sepsis/patología
5.
Pharmacol Res ; 117: 1-8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27979692

RESUMEN

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Humanos , Sistema Inmunológico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Nervio Vago/efectos de los fármacos
6.
J Neuroinflammation ; 13(1): 159, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27334012

RESUMEN

BACKGROUND: Viral encephalitis is a common cause of lethal infections in humans, and several different viruses are documented to be responsible. Rocio virus is a flavivirus that causes a severe lethal encephalitis syndrome in humans and also mice, providing an interesting model to study the CNS compartmentalized immune response. Interleukin 33 (IL-33), a member of the IL-1 family, is an immunomodulatory cytokine that is highly expressed in the CNS. However, the role of IL-33 on viral encephalitis remains unclear. Therefore, we aimed to explore how the IL-33/ST2 axis regulates the local immune response during Rocio virus infection. METHODS: Wild-type (WT), ST2 (ST2(-/-)), and nitric oxide synthase-deficient mice (iNOS(-/-)) and Stat6 (Stat6(-/-))-deficient mice were infected with different concentrations of the Rocio virus by intraperitoneal route, the cytokine mRNA level in CNS was analyzed by qPCR, and cellular immunophenotyping was performed on infected mice by the flow cytometry of isolated CNS mononuclear cells. RESULTS: We have shown that the mRNA expression of IL-33 and ST2 receptors is increased in the CNS of Rocio virus-infected WT mice and that ST2(-/-) mice showed increased susceptibility to infection. ST2 deficiency was correlated with increased tissue pathology, cellular infiltration, and tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ) mRNA levels and higher viral load in the CNS, compared with wild-type mice. The increased Th1 cytokine levels released in the CNS acted on infiltrating macrophages, as evidenced by flow cytometry characterization of cellular infiltrates, inducing the expression of iNOS, contributing to brain injury. Moreover, iNOS(-/-) mice were more resistant to Rocio virus encephalitis, presenting a lower clinical score and reduced mortality rate, despite the increased tissue pathology. CONCLUSIONS: We provide evidences of a specific role for IL-33 receptor signaling in nitric oxide induction through local IFN-γ modulation, suggesting that nitric oxide overproduction might have an important role in the progression of experimental viral encephalitis.


Asunto(s)
Sistema Nervioso Central , Encefalitis Viral/patología , Interleucina-33/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Infecciones por Flaviviridae/patología , Citometría de Flujo , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT6/deficiencia , Factor de Transcripción STAT6/genética , Transducción de Señal/fisiología
7.
J Nat Prod ; 79(4): 954-60, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26938776

RESUMEN

Vestitol is an isoflavonoid isolated from Brazilian red propolis with potential anti-inflammatory activity. This study investigated the mechanism of action of vestitol on the modulation of neutrophil migration in the inflammatory process. Pre-treatment with vestitol at 1, 3, or 10 mg/kg reduced LPS- or mBSA-induced neutrophil migration and the release of CXCL1/KC and CXCL2/MIP-2 in vivo. Likewise, pre-treatment with vestitol at 1, 3, or 10 µM reduced the levels of CXCL1/KC and CXCL2/MIP-2 in macrophage supernatants in vitro. Moreover, the administration of vestitol (10 mg/kg) reduced leukocyte rolling and adherence in the mesenteric microcirculation of mice. The pre-treatment with vestitol (10 mg/kg) in iNOS(-/-) mice did not block its activity concerning neutrophil migration. With regard to the activity of vestitol on neutrophils isolated from the bone marrow of mice, there was a reduction on the chemotaxis of CXCL2/MIP-2 or LTB4-induced neutrophils and on calcium influx after pre-treatment with the compound at 3 or 10 µM. There was no change in CXCR2 expression by neutrophils treated with vestitol at 10 µM. These findings demonstrate that vestitol is a promising novel anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Flavonoides/aislamiento & purificación , Neutrófilos/efectos de los fármacos , Própolis/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Brasil , Quimiocina CXCL1 , Flavonoides/química , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Infiltración Neutrófila , Óxido Nítrico Sintasa de Tipo II/genética
8.
J Nat Prod ; 79(7): 1828-33, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27367493

RESUMEN

Chemical compounds belonging to the class of coumarins have promising anti-inflammatory potential. Cinnamoyloxy-mammeisin (CNM) is a 4-phenylcoumarin that can be isolated from Brazilian geopropolis. To our knowledge, its anti-inflammatory activity has never been studied. Therefore, the present study investigated the anti-inflammatory activity of CNM and elucidated its mechanism of action on isolated macrophages. Pretreatment with CNM reduced neutrophil migration into the peritoneal and joint cavity of mice. Likewise, CNM reduced the in vitro and in vivo release of TNF-α and CXCL2/MIP-2. Regarding the possible molecular mechanism of action, CNM reduced the phosphorylation of proteins ERK 1/2, JNK, p38 MAPK, and AP-1 (subunit c-jun) in PG-stimulated macrophages. Pretreatment with CNM also reduced NF-κB activation in RAW 264.7 macrophages stably expressing the NF-κB-luciferase reporter gene. On the other hand, it did not alter IκBα degradation or nuclear translocation of p65. Thus, the results of this study demonstrate promising anti-inflammatory activity of CNM and provide an explanation of its mechanism of action in macrophages via inhibition of MAPK signaling, AP-1, and NF-κB.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Cumarinas/aislamiento & purificación , Cumarinas/farmacología , Animales , Antiinflamatorios/química , Brasil , Cumarinas/química , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Estructura Molecular , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1 , Factor de Necrosis Tumoral alfa/farmacología , eIF-2 Quinasa/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
10.
Biomolecules ; 14(10)2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39456191

RESUMEN

EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Mitocondrias , Retículo Sarcoplasmático , Animales , Retículo Sarcoplasmático/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Músculos/metabolismo
11.
J Int Bioethique Ethique Sci ; 33(2): 51-60, 2023.
Artículo en Francés | MEDLINE | ID: mdl-36894340

RESUMEN

The article discusses the impact of the digitalisation of politics on the place of bodies in the political and social life of liberal democracies. The author intends to show that the promise of the disappearance of bodies from the public space has only been partially fulfilled, and that ’surveillance capitalism’ has instead given new vigour to new forms of mobilisation characterised by the instrumentation of bodies for political purposes.


Asunto(s)
Democracia , Internet , Humanos , Política , Capitalismo
12.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376720

RESUMEN

BACKGROUND: Previous data have reported that the growth of established tumors may be facilitated by postsepsis disorder through changes in the microenvironment and immune dysfunction. However, the influence of postsepsis disorder in initial carcinogenesis remains elusive. METHODS: In the present work, the effect of postsepsis on inflammation-induced early carcinogenesis was evaluated in an experimental model of colitis-associated colorectal cancer (CAC). We also analyzed the frequency and role of intestinal T regulatory cells (Treg) in CAC carcinogenesis. RESULTS: The colitis grade and the tumor development rate were evaluated postmortem or in vivo through serial colonoscopies. Sepsis-surviving mice (SSM) presented with a lower colonic DNA damage, polyp incidence, reduced tumor load, and milder colitis than their sham-operated counterparts. Ablating Treg led to restoration of the ability to develop colitis and tumor polyps in the SSM, in a similar fashion to that in the sham-operated mice. On the other hand, the growth of subcutaneously inoculated MC38luc colorectal cancer cells or previously established chemical CAC tumors was increased in SSM. CONCLUSION: Our results provide evidence that postsepsis disorder has a dual effect in cancer development, inhibiting inflammation-induced early carcinogenesis in a Treg-dependent manner, while increasing the growth of previously established tumors.


Asunto(s)
Colitis/complicaciones , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Inflamación/complicaciones , Sepsis/complicaciones , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Colitis/inmunología , Colitis/patología , Neoplasias del Colon/etiología , Citocinas/metabolismo , Femenino , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Sepsis/inmunología , Sepsis/patología , Transducción de Señal
13.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32926098

RESUMEN

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Trampas Extracelulares/fisiología , Neumonía Viral/inmunología , Neumonía Viral/virología , Células A549 , Adulto , Enzima Convertidora de Angiotensina 2 , COVID-19 , Muerte Celular , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Células HeLa , Humanos , Masculino , Activación Neutrófila , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/sangre , Neumonía Viral/patología , SARS-CoV-2 , Serina Proteasas/metabolismo , Succión , Tráquea/inmunología
14.
Front Immunol ; 10: 3108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082301

RESUMEN

The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. In vitro, mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. In vivo, NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR-/- mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.


Asunto(s)
Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Trampas Extracelulares/inmunología , Interacciones Huésped-Patógeno/inmunología , Neutrófilos/inmunología , Animales , Biomarcadores , Línea Celular , Fiebre Chikungunya/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Trampas Extracelulares/genética , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Glicoproteínas de Membrana , Ratones , Ratones Noqueados , Pruebas de Neutralización , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 7 , Carga Viral , Replicación Viral , Virus Zika/inmunología
15.
Shock ; 52(5): e100-e106, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30724784

RESUMEN

Neutrophils and inflammatory monocytes control sepsis by migration to the site of infection via their chemokine receptors. CCR5 is a chemokine receptor that is not expressed on neutrophils and inflammatory monocytes under homeostatic conditions. However, it has been demonstrated that CCR5 can become expressed on these cells during different models of inflammation. In the present study, we investigated if CCR5 is also expressed on neutrophil and inflammatory monocytes during sepsis, exerting an important role in the migration of these cells to the infectious focus. Using cecal ligation and puncture model to induce polymicrobial sepsis, we demonstrated that the expression of CCR5 is induced on CD11bLy6GLy6C inflammatory monocytes, but not on neutrophils (CD11bLy6GLy6C). Furthermore, CCR5 plays an important role for the migration of the inflammatory monocytes to infection focus during sepsis. CCR5-expressing inflammatory monocytes migrate from the bone marrow to the circulation and then into the site of infection, where they phagocytize and kill the bacteria. Consequently, CCR5 mice showed increased systemic inflammatory response and mortality compared to wild-type mice. These data therefore demonstrate a hitherto unrecognized protective role of CCR5 in sepsis.


Asunto(s)
Células de la Médula Ósea/inmunología , Movimiento Celular/inmunología , Monocitos/inmunología , Receptores CCR5/inmunología , Sepsis/inmunología , Animales , Células de la Médula Ósea/patología , Movimiento Celular/genética , Ratones , Ratones Noqueados , Monocitos/patología , Receptores CCR5/genética , Sepsis/genética , Sepsis/patología
16.
Eur J Med Chem ; 153: 49-55, 2018 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-28755848

RESUMEN

Anti-Inflammatory drugs have been routinely used in the management of acute and chronic inflammatory conditions. Nevertheless, their undesirable side and adverse effects have encouraged the development of more selective, tolerable and efficacious drugs able to modulate the inflammatory process through distinct mechanisms than those of drugs currently available in the market, for instance, inhibition of leukocyte recruitment (chemotaxis, rolling, adhesion and transmigration). Natural products, including Brazilian propolis, have been considered a rich source of anti-inflammatory molecules due to a very complex phytochemical diversity. Brazil has at least thirteen distinct types of propolis and many bioactive compounds have been isolated therefrom, such as apigenin, artepillin C, vestitol, neovestitol, among others. These molecules were proven to play a significant immunomodulatory role through (i) inhibition of inflammatory cytokines (e.g. TNF-α) and chemokines (CXCL1/KC and CXCL2/MIP2); (ii) inhibition of IκBα, ERK1/2, JNK and p38MAPK phosphorylation; (iii) inhibition of NF-κB activation; and (iv) inhibition of neutrophil adhesion and transmigration (ICAM-1, VCAM-1 and E-selectin expression). In this review, we shed light on the new advances in the research of compounds isolated from Brazilian propolis from Apis mellifera bees as potentially novel anti-inflammatory drugs. The compilation of data and insights presented herein may open further avenues for the pharmacological management of oral and systemic inflammatory conditions. Further research should focus on clinical and acute/chronic toxicological validation of the most promising compounds described in this review.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Própolis/química , Própolis/farmacología , Animales , Antiinflamatorios/uso terapéutico , Abejas/química , Brasil , Descubrimiento de Drogas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Terapia Molecular Dirigida , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Própolis/uso terapéutico
17.
Cancer Res ; 78(20): 5891-5900, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30104241

RESUMEN

Paclitaxel is an antineoplastic agent widely used to treat several solid tumor types. The primary mechanism of action of paclitaxel is based on microtubule stabilization inducing cell-cycle arrest. Here, we use several tumor models to show that paclitaxel not only induces tumor cell-cycle arrest, but also promotes antitumor immunity. In vitro, paclitaxel reprogrammed M2-polarized macrophages to the M1-like phenotype in a TLR4-dependent manner, similarly to LPS. Paclitaxel also modulated the tumor-associated macrophage (TAM) profile in mouse models of breast and melanoma tumors; gene expression analysis showed that paclitaxel altered the M2-like signature of TAMs toward an M1-like profile. In mice selectively lacking TLR4 on myeloid cells, for example, macrophages (LysM-Cre+/-/TLR4fl/fl), the antitumor effect of paclitaxel was attenuated. Gene expression analysis of tumor samples from patients with ovarian cancer before and after treatment with paclitaxel detected an enrichment of genes linked to the M1 macrophage activation profile (IFNγ-stimulated macrophages). These findings indicate that paclitaxel skews TAMs toward an immunocompetent profile via TLR4, which might contribute to the antitumor effect of paclitaxel and provide a rationale for new combination regimens comprising paclitaxel and immunotherapies as an anticancer treatment.Significance: This study provides new evidence that the antitumor effect of paclitaxel occurs in part via reactivation of the immune response against cancer, guiding tumor-associated macrophages toward the M1-like antitumor phenotype.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5891/F1.large.jpg Cancer Res; 78(20); 5891-900. ©2018 AACR See related commentary by Garassino et al., p. 5729.


Asunto(s)
Macrófagos/metabolismo , Neoplasias/patología , Paclitaxel/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema Inmunológico , Inmunoterapia , Activación de Macrófagos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
18.
PLoS One ; 13(6): e0199071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897990

RESUMEN

Rocio virus (ROCV) was the causative agent of an unprecedented outbreak of encephalitis during the 1970s in the Vale do Ribeira, Sao Paulo State, in the Southeast region of Brazil. Surprisingly, no further cases of ROCV infection were identified after this outbreak; however, serological surveys have suggested the circulation of ROCV among humans and animals in different regions of Brazil. Cross-protective immunity among flaviviruses is well documented; consequently, immunity induced by infections with other flaviviruses endemic to Brazil could potentially be responsible for the lack of ROCV infections. Herein, we evaluated the cross-protection mediated by other flaviviruses against ROCV infection using an experimental C57BL/6 mouse model. Cross-protection against ROCV infection was observed when animals had prior exposure to Ilheus virus or Saint Louis encephalitis virus, suggesting that cross-reactive anti-flavivirus antibodies may limit ROCV disease outbreaks.


Asunto(s)
Virus de la Encefalitis de San Luis/inmunología , Infecciones por Flavivirus/prevención & control , Flavivirus/patogenicidad , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Susceptibilidad a Enfermedades , Virus de la Encefalitis de San Luis/patogenicidad , Evolución Molecular , Femenino , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/mortalidad , Infecciones por Flavivirus/veterinaria , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tasa de Supervivencia
19.
J Bone Miner Res ; 32(5): 974-984, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28029186

RESUMEN

Chemerin is an adipokine that regulates adipogenesis and metabolic functions of mature adipocytes mainly through the activation of chemokine-like receptor 1 (CMKLR1). Elevated levels of chemerin have been found in individuals with obesity, type 2 diabetes, and osteoporosis. This adipokine was identified as an inflammatory and metabolic syndrome marker. Considering that the association between metabolic syndrome and bone health remains unclear, the present study aimed to clarify the role of chemerin in the pathophysiology of bone loss induced by dyslipidemia, particularly modulating osteoclastogenesis. In vitro analyses showed a downregulation of CMKLR1 at the early stage of differentiation and a gradual increase at late stages. Strikingly, chemerin did not modify osteoclast differentiation markers or osteoclast formation; however, it increased the actin-ring formation and bone resorption activity in mature osteoclasts. The increased bone resorption activity induced by chemerin was effectively inhibited by CMKLR1 antagonist (CCX832). Chemerin boosting mature osteoclast activity involves ERK5 phosphorylation. Moreover, two models of dyslipidemia (high-fat diet [HFD]-treated C57/BL6 and db/db mice) exhibited significantly increased level of chemerin in the serum and gingival tissue. Morphometric analysis showed that HFD-treated and db/db mice exhibited increased alveolar bone loss compared to respective control mice, which was associated with an up-regulation of chemerin, CMKLR1 and cathepsin K mRNA expression in the gingival tissue. The treatment of db/db mice with CCX832 effectively inhibited bone loss. Antagonism of chemerin receptor also inhibited the expression of cathepsin K in the gingival tissue. Our results show that chemerin not only increases osteoclasts activity in vitro, but also that increased level of chemerin in dyslipidemic mice plays a critical role in bone homeostasis. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Quimiocinas/metabolismo , Dislipidemias/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoclastos/metabolismo , Pérdida de Hueso Alveolar/inducido químicamente , Pérdida de Hueso Alveolar/patología , Animales , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Dislipidemias/inducido químicamente , Dislipidemias/patología , Masculino , Ratones , Osteoclastos/patología , Receptores de Quimiocina , Receptores Acoplados a Proteínas G/metabolismo
20.
Nat Commun ; 8: 14919, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374774

RESUMEN

Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression.


Asunto(s)
Tolerancia Inmunológica/inmunología , Interleucina-33/inmunología , Sepsis/inmunología , Linfocitos T Reguladores/inmunología , Anciano , Animales , Femenino , Humanos , Tolerancia Inmunológica/genética , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucina-33/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Sepsis/genética , Sepsis/metabolismo , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda