Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 43(30): 5432-5447, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37277178

RESUMEN

The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.


Asunto(s)
Isoenzimas , Transducción de Señal , Animales , Ratones , Transducción de Señal/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo
2.
J Biol Chem ; 295(37): 12885-12899, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32605925

RESUMEN

Integrin receptors regulate normal cellular processes such as signaling, cell migration, adhesion to the extracellular matrix, and leukocyte function. Talin recruitment to the membrane is necessary for its binding to and activation of integrin. Vertebrates have two highly conserved talin homologs that differ in their expression patterns. The F1-F3 FERM subdomains of cytoskeletal proteins resemble a cloverleaf, but in talin1, its F1 subdomain and additional F0 subdomain align more linearly with its F2 and F3 subdomains. Here, we present the talin2 crystal structure, revealing that its F0-F1 di-subdomain displays another unprecedented constellation, whereby the F0-F1-F2 adopts a new cloverleaf-like arrangement. Using multiangle light scattering (MALS), fluorescence lifetime imaging (FLIM), and FRET analyses, we found that substituting the corresponding residues in talin2 that abolish lipid binding in talin1 disrupt the binding of talin to the membrane, focal adhesion formation, and cell spreading. Our results provide the molecular details of the functions of specific talin isoforms in cell adhesion.


Asunto(s)
Adhesión Celular , Adhesiones Focales , Talina , Línea Celular , Adhesiones Focales/química , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Humanos , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Talina/química , Talina/genética , Talina/metabolismo
3.
Nat Chem Biol ; 13(2): 188-193, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941760

RESUMEN

Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context.


Asunto(s)
ARN/química , ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , ARN/genética , Empalme del ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad
4.
Annu Rev Physiol ; 76: 365-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24215443

RESUMEN

The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density and actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level.


Asunto(s)
Espinas Dendríticas/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Humanos , Sinapsis/fisiología
5.
J Neurosci ; 32(45): 15737-46, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136413

RESUMEN

Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here, three-photon microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence, and immunogold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca(2+) channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines, and NMDA receptor antagonists.


Asunto(s)
Dendritas/fisiología , Neuronas/fisiología , Vesículas Secretoras/fisiología , Serotonina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Canales de Calcio Tipo L/metabolismo , Dendritas/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Fluoxetina/farmacología , Masculino , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vesículas Secretoras/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
6.
J Neurosci ; 29(50): 15878-87, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20016104

RESUMEN

Packaging by the vesicular monoamine transporter (VMAT) is essential for mood-controlling serotonin transmission but has not been assayed during activity. Here, two-photon imaging of the fluorescent serotonin analog 5,7-dihydroxytryptamine and three-photon imaging of endogenous serotonin were used to study vesicular packaging as it supports release from the soma of serotonin neurons. Glutamate receptor activation in dorsal raphe brain slice evoked somatic release that was mediated solely by vesicle exocytosis. This release was accompanied by VMAT-mediated serotonin depletion from the nucleus, a large compartment free of monoaminergic degradation pathways that has not been implicated in neurotransmission previously. Finally, while some monoamine packaged at rest was held in reserve, monoamine packaged during stimulation was released completely. Hence, somatic vesicles loaded by VMAT during activity rapidly undergo exocytosis. In the absence of active zones and with limited neurotransmitter reuptake, somatic release by serotonin neurons is supported by recruitment from a large pool of extravesicular serotonin in the nucleus and cytoplasm, and preferential release of the newly packaged transmitter.


Asunto(s)
Núcleo Celular/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/fisiología , 5,7-Dihidroxitriptamina/farmacología , Animales , Núcleo Celular/efectos de los fármacos , Células Cultivadas , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Masculino , Neuronas/citología , Neuronas/efectos de los fármacos , Células PC12 , Núcleos del Rafe/citología , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Sci Rep ; 10(1): 1777, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019972

RESUMEN

Structural and functional plasticity of dendritic spines is the basis of animal learning. The rapid remodeling of actin cytoskeleton is associated with spine enlargement and shrinkage, which are essential for structural plasticity. The calcium-dependent protein kinase C isoform, PKCα, has been suggested to be critical for this actin-dependent plasticity. However, mechanisms linking PKCα and structural plasticity of spines are unknown. Here, we examine the spatiotemporal activation of actin regulators, including small GTPases Rac1, Cdc42 and Ras, in the presence or absence of PKCα during single-spine structural plasticity. Removal of PKCα expression in the postsynapse attenuated Rac1 activation during structural plasticity without affecting Ras or Cdc42 activity. Moreover, disruption of a PDZ binding domain within PKCα led to impaired Rac1 activation and deficits in structural spine remodeling. These results demonstrate that PKCα positively regulates the activation of Rac1 during structural plasticity.


Asunto(s)
Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Proteína Quinasa C-alfa/metabolismo , Sinapsis/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Femenino , Masculino , Ratones , Transducción de Señal/fisiología , Proteínas ras/metabolismo
8.
J Biomed Res ; 35(5): 339-350, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34230437

RESUMEN

Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway. More importantly, we found that, in PC12 cells, the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.

9.
Nat Neurosci ; 21(8): 1027-1037, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013171

RESUMEN

The protein kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity and, if so, how this synaptic activity is encoded by PKC. Here, using newly developed, isozyme-specific sensors, we demonstrate that classical isozymes are activated to varying degrees and with distinct kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity depends on a PDZ-binding motif present only in PKCα. The activation of PKCα during plasticity requires both NMDA receptor Ca2+ flux and autocrine brain-derived neurotrophic factor (BDNF)-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that, by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampus-dependent learning.


Asunto(s)
Comunicación Autocrina/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Señalización del Calcio/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C-alfa/fisiología , Animales , Comunicación Autocrina/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Señalización del Calcio/genética , Espinas Dendríticas , Activación Enzimática , Hipocampo/fisiología , Isoenzimas , Cinética , Aprendizaje/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa C-alfa/genética , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Curr Biol ; 26(22): 2992-3003, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27773571

RESUMEN

It is well recognized that G-protein-coupled receptors (GPCRs) can activate Ras-regulated kinase pathways to produce lasting changes in neuronal function. Mechanisms by which GPCRs transduce these signals and their relevance to brain disorders are not well understood. Here, we identify a major Ras regulator, neurofibromin 1 (NF1), as a direct effector of GPCR signaling via Gßγ subunits in the striatum. We find that binding of Gßγ to NF1 inhibits its ability to inactivate Ras. Deletion of NF1 in striatal neurons prevents the opioid-receptor-induced activation of Ras and eliminates its coupling to Akt-mTOR-signaling pathway. By acting in the striatal medium spiny neurons of the direct pathway, NF1 regulates opioid-induced changes in Ras activity, thereby sensitizing mice to psychomotor and rewarding effects of morphine. These results delineate a novel mechanism of GPCR signaling to Ras pathways and establish a critical role of NF1 in opioid addiction.


Asunto(s)
Analgésicos Opioides/metabolismo , Neurofibromina 1/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Femenino , Masculino , Ratones , Neostriado/metabolismo , Neurofibromina 1/metabolismo , Neuronas/metabolismo , Unión Proteica
11.
Biol Psychiatry ; 58(11): 894-900, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16043136

RESUMEN

BACKGROUND: Previous studies have indicated that beta adrenergic receptor stimulation has no effect on the cognitive functioning of the prefrontal cortex (PFC). Blockade of beta-1 and beta-2 receptors in the PFC with the mixed beta-1/beta-2 antagonist, propanolol, had no effect on spatial working memory performance. However, more selective blockade of beta-1 or beta-2 receptors might show efficacy if the two receptors have opposite effects on PFC function. The current study examined the effects of the selective beta-1 antagonist, betaxolol, on working memory in rats and monkeys. METHODS: In rats, betaxolol (.0011-1.11 microg/.5 microL) was infused into the PFC 5 min before delayed alternation testing. Monkeys were systemically injected with betaxolol (.0000011-.11 mg/kg) 2 hours before delayed response testing. RESULTS: Betaxolol produced a dose-related improvement in working memory performance following either direct PFC infusion in rats, or systemic administration in monkeys. However, some aged monkeys developed serious pancreatic problems over the course of this study. CONCLUSIONS: These findings suggest that endogenous activation of the beta-1 adrenergic receptor impairs PFC cognitive function. These results may have therapeutic relevance to post-traumatic stress disorder or other disorders with excessive noradrenergic activity and PFC dysfunction. Pancreatic side effects in aged subjects taking betaxolol warrants further investigation.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1 , Antagonistas Adrenérgicos beta/farmacología , Betaxolol/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Antagonistas Adrenérgicos beta/toxicidad , Animales , Atención/efectos de los fármacos , Betaxolol/toxicidad , Cognición/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes , Macaca mulatta , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microinyecciones , Enfermedades Pancreáticas/inducido químicamente , Corteza Prefrontal , Ratas , Técnicas Estereotáxicas
12.
Traffic ; 8(5): 512-22, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17451554

RESUMEN

Efficient cholinergic transmission requires accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs). However, the signals that regulate this vesicular targeting are not well characterized. Although previous studies suggest that the C-terminus of the transporter is required for its SV targeting, it is not clear whether this region is sufficient for this process. Furthermore, a synaptic vesicle-targeting motif (SVTM) within this sequence remains to be identified. Here we use a chimeric protein, TacA, between an unrelated plasma membrane protein, Tac, and the C-terminus of VAChT to demonstrate the sufficiency of the C-terminus for targeting to synaptic vesicle-like vesicles (SVLVs) in PC12 cells. TacA shows colocalization and cosedimentation with the SV marker synaptophysin. Deletion mutation analysis of TacA demonstrates that a short, dileucine motif-containing sequence is required and sufficient to direct this targeting. Dialanine mutation analysis within this sequence suggests indistinguishable signals for both internalization and SV sorting. Using additional chimeras as controls, we confirm the specificity of this region for SVLVs targeting. Therefore, we suggest that the dileucine-containing motif is sufficient as a dual signal for both internalization and SV targeting during VAChT trafficking.


Asunto(s)
Dipéptidos/fisiología , Señales de Clasificación de Proteína/fisiología , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dipéptidos/genética , Endocitosis/fisiología , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Datos de Secuencia Molecular , Mutación , Células PC12 , Fragmentos de Péptidos/genética , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/fisiología , Ratas , Receptores de Transferrina/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
13.
Hum Mol Genet ; 15(21): 3119-31, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16987871

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.


Asunto(s)
Encéfalo/fisiopatología , Fibras Colinérgicas/fisiología , Enfermedad de Huntington/fisiopatología , Animales , Encéfalo/patología , Química Encefálica , Estudios de Casos y Controles , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Enfermedad de Huntington/psicología , Masculino , Aprendizaje por Laberinto , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/metabolismo , Memoria , Ratones , Ratones Transgénicos , Placa Motora/metabolismo , Atrofia Muscular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Fisostigmina/farmacología , Proteínas Represoras/análisis , Proteínas Represoras/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/análisis , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda