Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 57(51): 21846-21854, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38093687

RESUMEN

Inorganic and methylated thioarsenates have recently been reported to form in paddy soil pore waters and accumulate in rice grains. Among them, dimethylmonothioarsenate (DMMTA) is particularly relevant because of its high cytotoxicity and potential misidentification as nonregulated dimethylarsenate (DMA). Studying DMMTA uptake and flag leaf, grain, and husk accumulation in rice plants during grain filling, substantial dethiolation to DMA was observed with only 8.0 ± 0.1, 9.1 ± 0.6, and 1.4 ± 0.2% DMMTA remaining, respectively. More surprisingly, similar shares of DMMTA were observed in control experiments with DMA, indicating in planta DMA thiolation. Exposure of different rice seedling varieties to not only DMA but also to arsenite and monomethylarsenate (MMA) revealed in planta thiolation as a common process in rice. Up to 35 ± 7% DMA thiolation was further observed in the shoots and roots of the model plant Arabidopsis thaliana. Parameters determining the ratio and kinetics of thiolation versus dethiolation are unknown, yet, but less DMA thiolation in glutathione-deficient mutants compared to wild-type plants suggested glutathione concentration as one potential parameter. Our results demonstrate that pore water is not the only source for thioarsenates in rice grains and that especially the currently nonregulated DMA needs to be monitored as a potential precursor of DMMTA formation inside rice plants.


Asunto(s)
Arabidopsis , Arsénico , Oryza , Contaminantes del Suelo , Ácido Cacodílico , Glutatión
2.
Environ Sci Technol ; 56(14): 10072-10083, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35759640

RESUMEN

Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.


Asunto(s)
Arabidopsis , Arsénico , Arsenitos , Arabidopsis/genética , Arabidopsis/metabolismo , Arsénico/metabolismo , Arsénico/toxicidad , Ácido Cacodílico , Humanos , Fitoquelatinas , Plantas/metabolismo
3.
Environ Sci Technol ; 53(10): 5787-5796, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31033272

RESUMEN

Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMAV) compared to MMMTA and monomethylarsenate (MMAV). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.


Asunto(s)
Arsénico , Arsenicales , Oryza , Transporte Biológico , Ácido Cacodílico , Humanos
4.
Environ Pollut ; 347: 123786, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484962

RESUMEN

Water management in paddy soils can effectively reduce the soil-to-rice grain transfer of either As or Cd, but not of both elements simultaneously due to the higher mobility of As under reducing and Cd under oxidizing soil conditions. Limestone amendment, the common form of liming, is well known for decreasing Cd accumulation in rice grown on acidic soils. Sulfate amendment was suggested to effectively decrease As accumulation in rice, especially under intermittent soil flooding. To study the unknown effects of combined sulfate and limestone amendment under intermittent flooding for simultaneously decreasing As and Cd in rice, we performed a pot experiment using an acidic sandy loam paddy soil. We also included a clay loam paddy soil to study the role of soil texture in low-As rice production under intermittent flooding. We found that liming not only decreased rice Cd concentrations but also greatly decreased dimethylarsenate (DMA) accumulation in rice. We hypothesize that this is due to suppressed sulfate reduction, As methylation, and As thiolation by liming in the sulfate-amended soil and a higher share of deprotonated DMA at higher pH which is taken up less readily than protonated DMA. Decreased gene abundance of potential soil sulfate-reducers by liming further supported our hypothesis. Combined sulfate and limestone amendment to the acidic sandy loam soil produced rice with 43% lower inorganic As, 72% lower DMA, and 68% lower Cd compared to the control soil without amendment. A tradeoff between soil aeration and water availability was observed for the clay loam soil, suggesting difficulties to decrease As in rice while avoiding plant water stress under intermittent flooding in fine-textured soils. Our results suggest that combining sulfate amendment, liming, and intermittent flooding can help to secure rice safety when the presence of both As and Cd in coarse-textured soils is of concern.


Asunto(s)
Arsénico , Compuestos de Calcio , Oryza , Óxidos , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Carbonato de Calcio , Suelo , Sulfatos , Arcilla , Óxidos de Azufre , Arena , Contaminantes del Suelo/análisis
5.
Environ Pollut ; 322: 121152, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731739

RESUMEN

Accumulation of inorganic arsenic (iAs) and dimethylarsenate (DMA) in rice threatens human health and rice yield, respectively. We studied the yet unclear interactions of soil sulfate amendment and water management for decreasing As accumulation in rice grain in a pot experiment. We show that soil sulfate amendment (+200 mg S/kg soil) decreased grain iAs by 44% without clearly increasing grain DMA under intermittent flooding from booting stage to maturation. Under continuous flooding during this period, sulfate amendment decreased grain iAs only by 25% but increased grain DMA by 68%. The mechanisms of sulfate amendment effects on grain iAs were not explained by porewater composition or in-planta As sequestration but were allocated to the rhizosphere. Grain iAs closely correlated with As in the root iron-plaque (r = 0.92) which was effectively decreased by sulfate amendment and may have acted as an iAs source for rice uptake. Although both sulfate amendment and intermittent flooding substantially increased porewater DMA concentrations, it was the continuous flooding, irrespective of sulfate amendment, that resulted in rice straighthead disease with 47-55% less yield and 258-320% more DMA in grains than intermittent flooding. This study suggests that combining soil sulfate amendment and intermittent flooding can help to secure the quantity and quality of rice produced in As-affected areas. Our results also imply the key role of rhizosphere processes in controlling both iAs and DMA accumulation in rice which should be elucidated in the future.


Asunto(s)
Arsénico , Arsenicales , Oryza , Contaminantes del Suelo , Humanos , Arsénico/análisis , Suelo , Agua , Sulfatos , Contaminantes del Suelo/análisis , Arsenicales/análisis , Ácido Cacodílico , Grano Comestible/química , Abastecimiento de Agua
6.
Sci Total Environ ; 873: 162354, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822435

RESUMEN

Ría of Huelva, located in southwestern Spain, is a highly metal(loid)-contaminated estuary system where sediments are exceeding action limits in an increasing order for Cd, Zn, Pb, Cu, and As. With a predicted sea level rise over the next 50 years, the estuary will be subject to flooding with brackish water or seawater. To evaluate the risk of metal(loid) mobilization under future climate scenarios, different locations along the estuary were sampled at different depths. Samples were flooded with river water, brackish water, and seawater under different short- and long-term laboratory setups. Potential metal(loid) mobilization showed that water quality standards for As, Pb, Zn, Ni, Cu, and Cd could be exceeded upon seawater flooding. However, metal(loid) mobilization was not predictable solely based on sediment loads. The driving factors for cation and anion mobility were identified to be mainly pH under low salinity and competitive desorption under high salinity conditions. Further drivers such as wave movement or labile C input in C-limited systems were found to enhance metal(loid) mobilization. Long-term flooding of intact sediment cores revealed that sea level rise will have different effects on the estuary system depending on duration of flooding. Short-term flooding in the near future will first affect alkaline sediments and enhance currently low cation mobilization, while anion mobilization due to reductive Fe dissolution will remain high. Once acidic sediments further inland are flooded with seawater, highest contaminant mobilization can be expected as high salinity will further enhance already high cation mobilization under acidic pH. Long-term flooding with seawater will neutralize the sediment pH and limit cation mobilization compared to acidic pH. However, the contaminant load stored in the estuary is so high that, extrapolating data obtained, mobilization could last for >1000 years, e.g. for As, Pb, and Al.

7.
J Agric Food Chem ; 70(31): 9610-9618, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901520

RESUMEN

Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.


Asunto(s)
Arsénico , Arsenicales , Oryza , Arsénico/toxicidad , Ácido Cacodílico/toxicidad , Carcinógenos/toxicidad , Humanos
8.
J Agric Food Chem ; 69(7): 2287-2294, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33566616

RESUMEN

Inorganic and methylated thioarsenates have recently been reported to contribute substantially to arsenic (As) speciation in paddy-soil pore waters. Here, we show that thioarsenates can also accumulate in rice grains and rice products. For their detection, a method was developed using a pepsin-pancreatin enzymatic extraction followed by chromatographic separation at pH 13. From 54 analyzed commercial samples, including white, parboiled and husked rice, puffed rice cakes, and rice flakes, 50 contained dimethylmonothioarsenate (DMMTA) (maximum 25.6 µg kg-1), 18 monothioarsenate (MTA) (maximum 5.6 µg kg-1), 14 dimethyldithioarsenate (DMDTA) (maximum 2.8 µg kg-1), and 5 dithioarsenate (DTA) (maximum 2.3 µg kg-1). Additionally, we show that the commonly used nitric acid extraction transforms MTA to arsenite and DMMTA and DMDTA to dimethylarsenate (DMA). Current food guidelines do not require an analysis of thioarsenates in rice and only limit the contents of inorganic oxyarsenic species (including acid-extraction-transformed MTA), but not DMA (including acid-extraction-transformed DMMTA and DMDTA).


Asunto(s)
Arsénico , Oryza , Ácido Cacodílico , Estructuras de las Plantas , Suelo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda