Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 20(7): 13354-73, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26205059

RESUMEN

Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-ß estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).


Asunto(s)
Anticonceptivos Orales/química , Estradiol/química , Megestrol/análogos & derivados , Procesos Fotoquímicos , Energía Solar , Agua/química , Catálisis , Megestrol/química
2.
Data Brief ; 28: 104855, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31871995

RESUMEN

Biochars are emerging eco-friendly products showing outstanding properties in areas such as carbon sequestration, soil amendment, bioremediation, biocomposites, and bioenergy. These interesting materials can be synthesized from a wide variety of waste-derived sources, including lignocellulosic biomass wastes, manure and sewage sludge. In this work, abundant data on biochars produced from coconut-shell wastes obtained from the Colombian Pacific Coast are presented. Biochar synthesis was performed varying the temperature (in the range: 280 °C-420 °C) and O2 feeding (in the range: 0-5% v/v) in the pyrolysis reaction. Production yields and some biochar properties such as particle size, Zeta Potential, elemental content (C, N, Al, B, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Ti, Zn), BET surface area, FT-IR spectrum, XRD spectrum, and SEM morphology are presented. This data set is a comprehensive resource to gain a further understanding of biochars, and is a valuable tool for addressing the strategic exploitation of the multiple benefits they have.

3.
Environ Sci Technol ; 44(13): 5112-20, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20527954

RESUMEN

This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.


Asunto(s)
Monitoreo del Ambiente/métodos , Fotoquímica/métodos , Luz Solar , Absorción , Algoritmos , Reactores Biológicos , Catálisis , Vidrio , Modelos Químicos , Modelos Estadísticos , Modelos Teóricos , Óptica y Fotónica , Fotones , Factores de Tiempo , Titanio/química
4.
Environ Sci Technol ; 43(23): 8953-60, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19943672

RESUMEN

The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.


Asunto(s)
Herbicidas/química , Herbicidas/efectos de la radiación , Minerales/química , Modelos Químicos , Fotoquímica/instrumentación , Luz Solar , Absorción , Carbono/análisis , Catálisis/efectos de la radiación , Colombia , Cinética , Fotones , Proyectos Piloto , Análisis de Regresión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda