Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Cell Physiol ; : e31365, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946084

RESUMEN

Schwannomas are benign tumors of the peripheral nervous system arising from the transformation of Schwann cells (SCs). On the whole, these tumors are related to alterations of the neurofibromin type 2 gene, coding for the oncosuppressor merlin, a cytoskeleton-associated protein belonging to the ezrin-radixin-moesin family. However, the underlying mechanisms of schwannoma onset and progression are not fully elucidated, whereas one of the challenges might be the environment. In this light, the exposure to electromagnetic field (EMF), generated by the use of common electrical devices, has been defiantly suggested as the cause of SCs transformation even if the evidence was mostly epidemiologic. Indeed, insubstantial mechanisms have been so far identified to explain SCs oncotransformation. Recently, some in vitro evidence pointed out alterations in proliferation and migration abilities in SCs exposed to EMF (0.1 T, 50 Hz, 10 min). Here, we used the same experimental paradigma to discuss the involvement of putative epigenetic mechanisms in SCs adaptation to EMF and to explain the occurrence of hypoxic alterations after the exposure. Our findings indicate a set of environmental-induced changes in SCs, toward a less-physiological state, which may be pathologically relevant for the SCs differentiation and the schwannoma development.

2.
Mol Neurobiol ; 56(2): 1461-1474, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29948947

RESUMEN

GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron-SC interaction.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Receptores de GABA-B/deficiencia , Células de Schwann/citología , Animales , Células Cultivadas , Ganglios Espinales/citología , Ratones Transgénicos , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Neural Regen Res ; 12(7): 1013-1023, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28852375

RESUMEN

The development, maturation and regeneration of Schwann cells (SCs), the main glial cells of the peripheral nervous system, require the coordinate and complementary interaction among several factors, signals and intracellular pathways. These regulatory molecules consist of integrins, neuregulins, growth factors, hormones, neurotransmitters, as well as entire intracellular pathways including protein-kinase A, C, Akt, Erk/MAPK, Hippo, mTOR, etc. For instance, Hippo pathway is overall involved in proliferation, apoptosis, regeneration and organ size control, being crucial in cancer proliferation process. In SCs, Hippo is linked to merlin and YAP/TAZ signaling and it seems to respond to mechanic/physical challenges. Recently, among factors regulating SCs, also the signaling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) proved relevant for SC fate, participating in the regulation of adhesion, motility, migration and in vitro myelination. In SCs, the factors Src and FAK are regulated by the neuroactive steroid allopregnanolone, thus corroborating the importance of this steroid in the control of SC maturation. In this review, we illustrate some old and novel signaling pathways modulating SC biology and functions during the different developmental, mature and regenerative states.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda