Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Geophys Res Atmos ; 120(23): 12143-12156, 2015 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27867780

RESUMEN

We present three terrestrial gamma ray flashes (TGFs) observed over the Mediterranean basin by the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) satellite. Since the occurrence of these events in the Mediterranean region is quite rare, the characterization of the events was optimized by combining different approaches in order to better define the cloud of origin. The TGFs on 7 November 2004 and 16 October 2006 came from clouds with cloud top higher than 10-12 km where often a strong penetration into the stratosphere is found. This kind of cloud is usually associated with heavy precipitation and intense lightning activity. Nevertheless, the analysis of the cloud type based on satellite retrievals shows that the TGF on 27 May 2004 was produced by an unusual shallow convection. This result appears to be supported by the model simulation of the particle distribution and phase in the upper troposphere. The TGF on 7 November 2004 is among the brightest ever measured by RHESSI. The analysis of the energy spectrum of this event is consistent with a production altitude ≤12 km, which is in the upper part of the cloud, as found by the meteorological analysis of the TGF-producing thunderstorm. This event must be unusually bright at the source in order to produce such a strong signal in RHESSI. We estimate that this TGF must contain ∼3 × 1018 initial photons with energy >1 MeV. This is 1 order of magnitude brighter than earlier estimations of an average RHESSI TGF.

2.
J Geophys Res Space Phys ; 119(10): 8698-8704, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26167434

RESUMEN

The source fluence distribution of terrestrial gamma ray flashes (TGFs) has been extensively discussed in recent years, but few have considered how the TGF fluence distribution at the source, as estimated from satellite measurements, depends on the distance from satellite foot point and assumed production altitude. As the absorption of the TGF photons increases significantly with lower source altitude and larger distance between the source and the observing satellite, these might be important factors. We have addressed the issue by using the tropopause pressure distribution as an approximation of the TGF production altitude distribution and World Wide Lightning Location Network spheric measurements to determine the distance. The study is made possible by the increased number of Ramaty High Energy Solar Spectroscopic Imager (RHESSI) TGFs found in the second catalog of the RHESSI data. One find is that the TGF/lightning ratio for the tropics probably has an annual variability due to an annual variability in the Dobson-Brewer circulation. The main result is an indication that the altitude distribution and distance should be considered when investigating the source fluence distribution of TGFs, as this leads to a softening of the inferred distribution of source brightness.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda