Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166614

RESUMEN

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Asunto(s)
Retrovirus Endógenos/fisiología , Homeostasis , Inflamación/microbiología , Inflamación/patología , Microbiota , Animales , Bacterias/metabolismo , Cromosomas Bacterianos/genética , Dieta Alta en Grasa , Inflamación/inmunología , Inflamación/virología , Interferón Tipo I/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Retroelementos/genética , Transducción de Señal , Piel/inmunología , Piel/microbiología , Linfocitos T/inmunología , Transcripción Genética
2.
Cell ; 178(5): 1088-1101.e15, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442402

RESUMEN

Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.


Asunto(s)
Médula Ósea/metabolismo , Memoria Inmunológica , Animales , Médula Ósea/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Restricción Calórica/veterinaria , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Dieta Reductora/veterinaria , Metabolismo Energético , Regulación de la Expresión Génica , Glucocorticoides , Melanoma Experimental/mortalidad , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426691

RESUMEN

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Plasticidad de la Célula/inmunología , Microambiente Celular/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos CD/inmunología , Linfocitos T CD8-positivos/citología , Femenino , Cadenas alfa de Integrinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/metabolismo
4.
Immunity ; 57(1): 14-27, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198849

RESUMEN

Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Animales , Inflamación , Reacciones Cruzadas , Neoplasias/terapia , Mamíferos
5.
Immunity ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406246

RESUMEN

Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor ß (TGF-ß)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.

6.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29358051

RESUMEN

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Asunto(s)
Inmunidad Adaptativa , Bacterias/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Microbiota/inmunología , Piel/inmunología , Linfocitos T/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Ratones Transgénicos
7.
Immunity ; 55(2): 210-223, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139351

RESUMEN

Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease.


Asunto(s)
Dietoterapia , Inmunidad , Envejecimiento/inmunología , Restricción Calórica , Humanos , Inflamación , Cuerpos Cetónicos/biosíntesis , Cuerpos Cetónicos/inmunología , Desnutrición/inmunología , Microbiota/inmunología , Fenómenos Fisiológicos de la Nutrición/inmunología
8.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127432

RESUMEN

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Asunto(s)
Linfocitos B/fisiología , Microbioma Gastrointestinal/inmunología , Centro Germinal/fisiología , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Autoanticuerpos/sangre , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Inmunidad Humoral/genética , Cambio de Clase de Inmunoglobulina/genética , Síndromes de Inmunodeficiencia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
9.
Immunity ; 47(6): 1154-1168.e6, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29221731

RESUMEN

White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.


Asunto(s)
Tejido Adiposo Blanco/trasplante , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Toxoplasmosis/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología , Tejido Adiposo Blanco/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/parasitología , Linfocitos T CD8-positivos/microbiología , Linfocitos T CD8-positivos/parasitología , Expresión Génica , Genes Reporteros , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Metabolismo de los Lípidos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Supervivencia , Trasplante de Tejidos , Toxoplasma/inmunología , Toxoplasmosis/genética , Toxoplasmosis/mortalidad , Toxoplasmosis/parasitología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/genética , Infecciones por Yersinia pseudotuberculosis/microbiología , Infecciones por Yersinia pseudotuberculosis/mortalidad
10.
Nature ; 579(7800): 581-585, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103173

RESUMEN

Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Grasa Intraabdominal/inmunología , Caracteres Sexuales , Linfocitos T Reguladores/inmunología , Andrógenos/metabolismo , Animales , Quimiocina CCL2/inmunología , Cromatina/genética , Femenino , Regulación de la Expresión Génica , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/inmunología , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , RNA-Seq , Receptores CCR2/metabolismo , Células del Estroma/citología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Linfocitos T Reguladores/metabolismo , Transcripción Genética
11.
Proc Natl Acad Sci U S A ; 120(49): e2304905120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011570

RESUMEN

Mild or transient dietary restriction (DR) improves many aspects of health and aging. Emerging evidence from us and others has demonstrated that DR also optimizes the development and quality of immune responses. However, the factors and mechanisms involved remain to be elucidated. Here, we propose that DR-induced optimization of immunological memory requires a complex cascade of events involving memory T cells, the intestinal microbiota, and myeloid cells. Our findings suggest that DR enhances the ability of memory T cells to recruit and activate myeloid cells in the context of a secondary infection. Concomitantly, DR promotes the expansion of commensal Bifidobacteria within the large intestine, which produce the short-chain fatty acid acetate. Acetate conditioning of the myeloid compartment during DR enhances the capacity of these cells to kill pathogens. Enhanced host protection during DR is compromised when Bifidobacteria expansion is prevented, indicating that microbiota configuration and function play an important role in determining immune responsiveness to this dietary intervention. Altogether, our study supports the idea that DR induces both memory T cells and the gut microbiota to produce distinct factors that converge on myeloid cells to promote optimal pathogen control. These findings suggest that nutritional cues can promote adaptation and co-operation between multiple immune cells and the gut microbiota, which synergize to optimize immunity and protect the collective metaorganism.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ácidos Grasos Volátiles , Acetatos
12.
Nat Immunol ; 14(12): 1294-301, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24162776

RESUMEN

Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-ß (TGF-ß) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.


Asunto(s)
Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Cadenas alfa de Integrinas/inmunología , Transducción de Señal/inmunología , Piel/inmunología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Citometría de Flujo , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno/inmunología , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Piel/metabolismo , Piel/virología , Transcriptoma/genética , Transcriptoma/inmunología
13.
Immunity ; 45(4): 889-902, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27692609

RESUMEN

In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8+ T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Hígado/inmunología , Malaria/inmunología , Animales , Linfocitos T CD8-positivos/parasitología , Culicidae , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Hepatocitos/inmunología , Hepatocitos/parasitología , Hígado/parasitología , Hepatopatías/inmunología , Hepatopatías/parasitología , Vacunas contra la Malaria/inmunología , Ratones , Plasmodium berghei/inmunología , Esporozoítos/inmunología , Esporozoítos/parasitología , Vacunación/métodos
14.
Proc Natl Acad Sci U S A ; 119(26): e2200348119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727974

RESUMEN

Immune checkpoint inhibitors (ICIs) are essential components of the cancer therapeutic armamentarium. While ICIs have demonstrated remarkable clinical responses, they can be accompanied by immune-related adverse events (irAEs). These inflammatory side effects are of unclear etiology and impact virtually all organ systems, with the most common being sites colonized by the microbiota such as the skin and gastrointestinal tract. Here, we establish a mouse model of commensal bacteria-driven skin irAEs and demonstrate that immune checkpoint inhibition unleashes commensal-specific inflammatory T cell responses. These aberrant responses were dependent on production of IL-17 by commensal-specific T cells and induced pathology that recapitulated the cutaneous inflammation seen in patients treated with ICIs. Importantly, aberrant T cell responses unleashed by ICIs were sufficient to perpetuate inflammatory memory responses to the microbiota months following the cessation of treatment. Altogether, we have established a mouse model of skin irAEs and reveal that ICIs unleash aberrant immune responses against skin commensals, with long-lasting inflammatory consequences.


Asunto(s)
Dermatitis , Inhibidores de Puntos de Control Inmunológico , Microbiota , Animales , Dermatitis/inmunología , Dermatitis/microbiología , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunidad/efectos de los fármacos , Interleucina-17/metabolismo , Ratones , Microbiota/efectos de los fármacos , Microbiota/inmunología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/inmunología , Simbiosis/efectos de los fármacos , Linfocitos T/inmunología
15.
Eur Heart J ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217604

RESUMEN

BACKGROUND AND AIMS: Current guidelines recommend 6 hours of solid food and 2 hours of clear liquid fasting for patients undergoing cardiac procedures with conscious sedation. There are no data to support this practice, and previous single centre studies support the safety of removing fasting requirements. The objective of this study was to determine the non-inferiority of a no fasting strategy to fasting prior to cardiac catheterisation procedures which require conscious sedation. METHODS: This is a multicentre, investigator-initiated, non-inferiority randomised trial conduced in Australia with a prospective open label blinded endpoint design. Patients referred for coronary angiography, percutaneous coronary intervention or cardiac implantable electronic device (CIED) related procedures were enrolled. Patients were randomised 1:1 to fasting as normal (6 hours solid food and 2 hours clear liquid) or no fasting requirements (encouraged to have regular meals but not mandated to do so). Recruitment occurred from 2022 to 2023. The primary outcome was a composite of aspiration pneumonia, hypotension, hyperglycaemia and hypoglycaemia assessed with a Bayesian approach. Secondary outcomes included patient satisfaction score, new ventilation requirement (non-invasive and invasive), new intensive care unit admission, 30-day readmission, 30-day mortality, 30-day pneumonia. RESULTS: 716 patients were randomised with 358 in each group. Those in the fasting arm had significantly longer solid food fasting (13.2 versus 3.0 hours, Bayes factor >100 indicating extreme evidence of difference) and clear liquid fasting times (7.0 versus 2.4 hours, Bayes factor >100). The primary composite outcome occurred in 19.1% of patients in the fasting arm and 12.0% of patients in the no fasting arm. The estimate of the mean posterior difference in proportions in the primary composite outcome was -5.2% (95% CI -9.6 to -0.9, ) favouring no fasting. This result confirms non-inferiority (posterior probability >99.5%) and superiority (posterior probability 99.1%) of no fasting for the primary composite outcome. The no fasting arm had improved patient satisfaction scores with a posterior mean difference of 4.02 points (95% CI 3.36 to 4.67, Bayes factor >100). Secondary outcome events were similar. CONCLUSIONS: In patients undergoing cardiac catheterisation and CIED related procedures, no fasting was non-inferior and superior to fasting for the primary composite outcome of aspiration pneumonia, hypotension, hyperglycaemia and hypoglycaemia. Patient satisfaction scores were significantly better with no fasting. This supports removing fasting requirements for patients undergoing cardiac catheterisation laboratory procedures that require conscious sedation.

16.
Diabetologia ; 67(7): 1304-1314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38584181

RESUMEN

AIMS/HYPOTHESIS: The risk of dying within 2 years of presentation with diabetic foot ulceration is over six times the risk of amputation, with CVD the major contributor. Using an observational evaluation of a real-world implementation pilot, we aimed to assess whether for those presenting with diabetic foot ulceration in England, introducing a 12-lead ECG into routine care followed by appropriate clinical action was associated with reduced mortality. METHODS: Between July 2014 and December 2017, ten multidisciplinary diabetic foot services in England participated in a pilot project introducing 12-lead ECGs for new attendees with foot ulceration. Inception coincided with launch of the National Diabetes Footcare Audit (NDFA), whereby all diabetic footcare services in England were invited to enter data on new attendees with foot ulceration. Poisson regression models assessed the mortality RR at 2 and 5 years following first assessment of those receiving care in a participating pilot unit vs those receiving care in any other unit in England, adjusting for age, sex, ethnicity, deprivation, type and duration of diabetes, ulcer severity, and morbidity in the year prior to first assessment. RESULTS: Of the 3110 people recorded in the NDFA at a participating unit during the pilot, 33% (1015) were recorded as having received an ECG. A further 25,195 people recorded in the NDFA had attended another English footcare service. Unadjusted mortality in the pilot units was 16.3% (165) at 2 years and 37.4% (380) at 5 years for those who received an ECG, and 20.5% (430) and 45.2% (950), respectively, for those who did not receive an ECG. For people included in the NDFA at other units, unadjusted mortality was 20.1% (5075) and 42.6% (10,745), respectively. In the fully adjusted model, mortality was not significantly lower for those attending participating units at 2 (RR 0.93 [95% CI 0.85, 1.01]) or 5 years (RR 0.95 [95% CI 0.90, 1.01]). At participating units, mortality in those who received an ECG vs those who did not was lower at 5 years (RR 0.86 [95% CI 0.76, 0.97]), but not at 2 years (RR 0.87 [95% CI 0.72, 1.04]). Comparing just those that received an ECG with attendees at all other centres in England, mortality was lower at 5 years (RR 0.87 [95% CI 0.78, 0.96]), but not at 2 years (RR 0.86 [95% CI 0.74, 1.01]). CONCLUSIONS/INTERPRETATION: The evaluation confirms the high mortality seen in those presenting with diabetic foot ulceration. Overall mortality at the participating units was not significantly reduced at 2 or 5 years, with confidence intervals just crossing parity. Implementation of the 12-lead ECG into the routine care pathway proved challenging for clinical teams-overall a third of attendees had one, although some units delivered the intervention to over 60% of attendees-and the evaluation was therefore underpowered. Nonetheless, the signals of potential mortality benefit among those who had an ECG suggest that units in a position to operationalise implementation may wish to consider this. DATA AVAILABILITY: Data from the National Diabetes Audit can be requested through the National Health Service Digital Data Access Request Service process at: https://digital.nhs.uk/services/data-access-request-service-dars/dars-products-and-services/data-set-catalogue/national-diabetes-audit-nda.


Asunto(s)
Pie Diabético , Electrocardiografía , Humanos , Pie Diabético/mortalidad , Femenino , Masculino , Inglaterra/epidemiología , Anciano , Proyectos Piloto , Persona de Mediana Edad , Amputación Quirúrgica/estadística & datos numéricos
17.
BMC Genomics ; 25(1): 5, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166631

RESUMEN

Human endogenous retroviruses (HERVs) are the germline embedded proviral fragments of ancient retroviral infections that make up roughly 8% of the human genome. Our understanding of HERVs in physiology primarily surrounds their non-coding functions, while their protein coding capacity remains virtually uncharacterized. Therefore, we applied the bioinformatic pipeline "hervQuant" to high-resolution ribosomal profiling of healthy tissues to provide a comprehensive overview of translationally active HERVs. We find that HERVs account for 0.1-0.4% of all translation in distinct tissue-specific profiles. Collectively, our study further supports claims that HERVs are actively translated throughout healthy tissues to provide sequences of retroviral origin to the human proteome.


Asunto(s)
Retrovirus Endógenos , Ribosomas , Humanos , Retrovirus Endógenos/genética , Ribosomas/genética
18.
Dev Psychobiol ; 66(2): e22466, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38388192

RESUMEN

In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the Bdnf gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of Bdnf expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of Bdnf expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased Bdnf expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the Bdnf gene may act as biomarker in the etiology and intervention effort efficacy following SCI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Traumatismos de la Médula Espinal , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Epigénesis Genética
19.
Circulation ; 145(19): 1443-1455, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35533220

RESUMEN

BACKGROUND: TEXTMEDS (Text Messages to Improve Medication Adherence and Secondary Prevention After Acute Coronary Syndrome) examined the effects of text message-delivered cardiac education and support on medication adherence after an acute coronary syndrome. METHODS: TEXTMEDS was a single-blind, multicenter, randomized controlled trial of patients after acute coronary syndrome. The control group received usual care (secondary prevention as determined by the treating clinician); the intervention group also received multiple motivational and supportive weekly text messages on medications and healthy lifestyle with the opportunity for 2-way communication (text or telephone). The primary end point of self-reported medication adherence was the percentage of patients who were adherent, defined as >80% adherence to each of up to 5 indicated cardioprotective medications, at both 6 and 12 months. RESULTS: A total of 1424 patients (mean age, 58 years [SD, 11]; 79% male) were randomized from 18 Australian public teaching hospitals. There was no significant difference in the primary end point of self-reported medication adherence between the intervention and control groups (relative risk, 0.93 [95% CI, 0.84-1.03]; P=0.15). There was no difference between intervention and control groups at 12 months in adherence to individual medications (aspirin, 96% vs 96%; ß-blocker, 84% vs 84%; angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, 77% vs 80%; statin, 95% vs 95%; second antiplatelet, 84% vs 84% [all P>0.05]), systolic blood pressure (130 vs 129 mm Hg; P=0.26), low-density lipoprotein cholesterol (2.0 vs 1.9 mmol/L; P=0.34), smoking (P=0.59), or exercising regularly (71% vs 68%; P=0.52). There were small differences in lifestyle risk factors in favor of intervention on body mass index <25 kg/m2 (21% vs 18%; P=0.01), eating ≥5 servings per day of vegetables (9% vs 5%; P=0.03), and eating ≥2 servings per day of fruit (44% vs 39%; P=0.01). CONCLUSIONS: A text message-based program had no effect on medical adherence but small effects on lifestyle risk factors. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364448; Unique identifier: ANZCTR ACTRN12613000793718.


Asunto(s)
Síndrome Coronario Agudo , Envío de Mensajes de Texto , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/prevención & control , Australia , Femenino , Humanos , Masculino , Cumplimiento de la Medicación , Persona de Mediana Edad , Prevención Secundaria , Método Simple Ciego
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda