Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Brain ; 147(7): 2471-2482, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386308

RESUMEN

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.


Asunto(s)
Ratones Noqueados , Trastornos del Neurodesarrollo , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Factores de Transcripción/genética
2.
Life (Basel) ; 14(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398753

RESUMEN

Schizophrenia (SZ) is a heterogeneous and debilitating psychiatric disorder with a strong genetic component. To elucidate functional networks perturbed in schizophrenia, we analysed a large dataset of whole-genome studies that identified SNVs, CNVs, and a multi-stage schizophrenia genome-wide association study. Our analysis identified three subclusters that are interrelated and with small overlaps: GO:0007017~Microtubule-Based Process, GO:00015629~Actin Cytoskeleton, and GO:0007268~SynapticTransmission. We next analysed three distinct trio cohorts of 75 SZ Algerian, 45 SZ French, and 61 SZ Japanese patients. We performed Illumina HiSeq whole-exome sequencing and identified de novo mutations using a Bayesian approach. We validated 88 de novo mutations by Sanger sequencing: 35 in French, 21 in Algerian, and 32 in Japanese SZ patients. These 88 de novo mutations exhibited an enrichment in genes encoding proteins related to GO:0051015~actin filament binding (p = 0.0011) using David, and enrichments in GO: 0003774~transport (p = 0.019) and GO:0003729~mRNA binding (p = 0.010) using Amigo. One of these de novo variant was found in CORO1C coding sequence. We studied Coro1c haploinsufficiency in a Coro1c+/- mouse and found defects in the corpus callosum. These results could motivate future studies of the mechanisms surrounding genes encoding proteins involved in transport and the cytoskeleton, with the goal of developing therapeutic intervention strategies for a subset of SZ cases.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda