Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Respir Cell Mol Biol ; 66(1): 53-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370624

RESUMEN

Idiopathic pulmonary fibrosis (IPF), a devastating, fibroproliferative, chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix. IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed assay of transposase-accessible chromatin sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared with healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphism analysis showed that linkage disequilibrium blocks of IPF risk single nucleotide polymorphisms with IPF-accessible regions that have been identified to be located in genes that are important in IPF, including MUC5B, TERT, and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.


Asunto(s)
Epigénesis Genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Transcriptoma/genética , Secuencia de Bases , Cromatina/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/metabolismo , Transposasas/metabolismo
2.
Respir Res ; 23(1): 349, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522710

RESUMEN

BACKGROUND: Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS: Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS: Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION: Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Hipertensión Pulmonar/patología , Remodelación Vascular , Células Endoteliales/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Arteria Pulmonar/metabolismo , Pulmón/metabolismo , Ceramidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas ADAM/metabolismo
3.
J Biol Chem ; 294(43): 15781-15794, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31488543

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFß1. We found that miR203, which is increased in IPF, was induced by TGFß1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFß1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFß1 transgenic mice revealed that TGFß1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFß1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFß1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.


Asunto(s)
Regiones no Traducidas 3'/genética , Pulmón/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Regulación hacia Abajo/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Poliadenilación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Exp Physiol ; 104(4): 568-579, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30663834

RESUMEN

NEW FINDINGS: What is the central question of this study? We have evaluated changes in cardiovascular physiology using echocardiography in an experimental model of lung fibrosis. What is the main finding and its importance? Remarkably, we report changes in cardiovascular function as early as day 7, concomitant with evidence of vascular remodelling. We also report that isolated pulmonary arteries were hypercontractile in response to a thromboxane A2 agonist. These findings are significant because the development of pulmonary hypertension is one of the most significant predictors of mortality in patients with lung fibrosis, where there are no available therapies and a lack of animal models. ABSTRACT: Group III pulmonary hypertension is observed in patients with chronic lung diseases such as chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Pulmonary hypertension (PH) develops as a result of extensive pulmonary vascular remodelling and resultant changes in vascular tone that can lead to right ventricle hypertrophy. This eventually leads to right heart failure, which is the leading indicator of mortality in patients with idiopathic pulmonary fibrosis. Treatments for group III PH are not available, in part owing to a lack of viable animal models. Here, we have evaluated the cardiovascular changes in a model of lung fibrosis and PH. Data obtained from this study indicated that structural alterations in the right heart, such as right ventricular wall hypertrophy, occurred as early as day 14, and similar increases in right ventricle chamber size were seen between days 21 and 28. These structural changes were correlated with decreases in the systolic function of the right ventricle and right ventricular cardiac output, which also occurred between the same time points. Characterization of pulmonary artery dynamics also highlighted that PH might be occurring as early as day 21, indicated by reductions in the velocity-time integral; however, evidence for PH is apparent as early as day 7, indicated by the significant reduction in pulmonary acceleration time values. These changes are consistent with evidence of vascular remodelling observed histologically starting on day 7. In addition, we report hyperactivity of bleomycin-exposed pulmonary arteries to a thromboxane A2 receptor (Tbxa2r) agonist.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Fibrosis Pulmonar/fisiopatología , Función Ventricular Derecha/fisiología , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Ecocardiografía/métodos , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Arteria Pulmonar/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fibrosis Pulmonar/inducido químicamente , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/fisiología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/fisiología
5.
RNA ; 22(6): 830-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27095025

RESUMEN

Alternative polyadenylation (APA) and alternative splicing (AS) provide mRNAs with the means to avoid microRNA repression through selective shortening or differential usage of 3'UTRs. The two glutaminase (GLS) mRNA isoforms, termed KGA and GAC, contain distinct 3'UTRs with the KGA isoform subject to repression by miR-23. We show that depletion of the APA regulator CFIm25 causes a strong shift to the usage of a proximal poly(A) site within the KGA 3'UTR and also alters splicing to favor exclusion of the GAC 3'UTR. Surprisingly, we observe that while miR-23 is capable of down-regulating the shortened KGA 3'UTR, it has only minor impact on the full-length KGA 3'UTR, demonstrating that additional potent negative regulation of GLS expression exists beyond this single microRNA targeting site. Finally, we show that the apoptosis induced upon down-regulation of the GAC isoform can be alleviated through concurrent reduction in CFIm25 expression, revealing the sensitivity of glutaminase expression to the levels of RNA processing factors. These results exemplify the complex interplay between RNA processing and microRNA repression in controlling glutamine metabolism in cancer cells.


Asunto(s)
Empalme Alternativo , Exones , Glutaminasa/genética , MicroARNs/fisiología , Regiones no Traducidas 3' , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Poli A/metabolismo , Poliadenilación
6.
Exp Physiol ; 103(12): 1692-1703, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30260066

RESUMEN

NEW FINDINGS: What is the central question of this study? When do alterations in pulmonary mechanics occur following chronic low-dose administration of bleomycin? What is the main finding and its importance? Remarkably, we report changes in lung mechanics as early as day 7 that corresponded to parameters determined from single-frequency forced oscillation manoeuvres and pressure-volume loops. These changes preceded substantial histological changes or changes in gene expression levels. These findings are significant to refine drug discovery in idiopathic pulmonary fibrosis, where preclinical studies using lung function parameters would enhance the translational potential of drug candidates where lung function readouts are routinely performed in the clinic. ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is the most widespread form of interstitial lung disease and, currently, there are only limited treatment options available. In preclinical animal models of lung fibrosis, the effectiveness of experimental therapeutics is often deemed successful via reductions in collagen deposition and expression of profibrotic genes in the lung. However, in clinical studies, improvements in lung function are primarily used to gauge the success of therapeutics directed towards IPF. Therefore, we examined whether changes in respiratory system mechanics in the early stages of an experimental model of lung fibrosis can be used to refine drug discovery approaches for IPF. C57BL/6J mice were administered bleomycin (BLM) or a vehicle control i.p. twice a week for 4 weeks. At 7, 14, 21, 28 and 33 days into the BLM treatment regimen, indices of respiratory system mechanics and pressure-volume relationships were measured. Concomitant with these measurements, histological and gene analyses relevant to lung fibrosis were performed. Alterations in respiratory system mechanics and pressure-volume relationships were observed as early as 7 days after the start of BLM administration. Changes in respiratory system mechanics preceded the appearance of histological and molecular indices of lung fibrosis. Administration of BLM leads to early changes in respiratory system mechanics that coincide with the appearance of representative histological and molecular indices of lung fibrosis. Consequently, these data suggest that dampening the early changes in respiratory system mechanics might be used to assess the effectiveness of experimental therapeutics in preclinical animal models of lung fibrosis.


Asunto(s)
Bleomicina/administración & dosificación , Pulmón/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Animales , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico
7.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L238-54, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27317687

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-ß activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Hipertensión Pulmonar/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos Alveolares/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Regulación hacia Abajo , Expresión Génica , Humanos , Hipertensión Pulmonar/etiología , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/fisiopatología , Interleucina-6/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Isoformas de Proteínas , Interferencia de ARN
8.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826482

RESUMEN

Background: The cardinal feature of systemic sclerosis (SSc) is skin thickening and tightening. Targetable mechanisms for skin features remain elusive. Drugs successful in treating internal organ manifestations have failed efficacy in skin. Dermal white adipose tissue (DWAT) is amongst the understudied contributors to skin manifestations. This study proposes the role of sine oculis homeobox homolog 1 (SIX1), a gene previously unrecognized as a contributor to dermal lipoatrophy characteristic of early skin fibrosis in SSc. Methods: Skin gene expression of SIX1 was analyzed in the GENISOS and PRESS SSc cohorts. Correlation analysis was performed with Spearman rank analysis. Novel mouse models were developed using the Cre-loxp system to knock out Six1 in all cells and mature adipocytes. Subcutaneous bleomycin was used to model early DWAT atrophy and dermal fibrosis characteristic of SSc. Findings: SIX1 was upregulated in SSc skin, the expression of which correlates with adipose-associated genes and molecular pathways. Genetic deletion of Six1 in all cells in mice challenged with bleomycin abrogated end-stage fibrotic gene expression and dermal adipocyte shrinkage. Adipocyte specific Six1 deletion was able to attenuate the early increase in skin thickness, a hallmark of experimental skin fibrosis. Further studies revealed a link between elevated SIX1 and increased expression of SERPINE1 and its protein PAI-1 which are known pro-fibrotic mediators. Interpretation: This work identifies SIX1 as an early marker of skin fibrosis in SSc. We also demonstrate a causative role of Six1 in skin fibrosis by promoting adipocyte loss and show that deletion of Six1 in adipocytes has the potential of impacting early disease progression.

9.
Eur J Pharm Sci ; 183: 106370, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642345

RESUMEN

mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had high encapsulation efficiency, protected mRNA from degradation, and exhibited sustained release kinetics. eGFP mRNA LNP transfection in human primary cells proved dose- and time-dependent in vitro. In a bleomycin mouse model of lung fibrosis, luciferase mRNA LNPs administered intratracheally led to site-specific lung accumulation. Importantly, bioluminescence signal was detected in lungs as early as 2 h after delivery, with signal still evident at 48 h. Of note, LNPs were found associated with AEC2 and fibroblasts in vivo. Findings highlight the potential for pulmonary delivery of mRNA in IPF, opening therapeutic avenues aimed at halting and potentially reversing disease progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Transducción de Señal , Animales , Ratones , Humanos , ARN Mensajero/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Bleomicina , Fibroblastos/metabolismo
10.
Pediatr Pulmonol ; 57(7): 1600-1607, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355453

RESUMEN

INTRODUCTION: Ventilator management is a critical part of managing congenital diaphragmatic hernia (CDH). We aimed to use a murine model and patient data to study CDH-associated differences in oxygenation, airway resistance, and pulmonary mechanics by disease severity. METHODS: We used the nitrofen model of CDH. For control and CDH rodents, data were collected within the first hour of life. Oxygen saturations (SpO2 ) were collected using MouseOx, and large airway resistance and inspiratory capacities were collected using flexiVent. A single-center, retrospective review of term CDH infants from 2014 to 2020 was performed. Tidal volumes were collected every 6 h for the first 48 h of life or until the patient was taken off conventional ventilation. Newborns that were mechanically ventilated but had no pulmonary pathology were used as controls. CDH severity was defined using the CDH Study Group (CDHSG) classification system. RESULTS: Control rodents had a median SpO2 of 94% (IQR: 88%-98%); CDH pups had a median SpO2 of 27.9% (IQR: 22%-30%) (p < 0.01). CDH rodents had lower inspiratory capacity than controls (median: 110 µl, IQR: 70-170 vs. median: 267 µl, IQR: 216-352; p < 0.01). CDH infants had a lower initial SpO2 than control infants. Overall, CDH infants had lower tidal volumes than control infants (median: 4.2 ml/kg, IQR: 3.3-5.0 vs. 5.4 ml/kg, IQR: 4.7-6.2; p = 0.03). Tidal volumes varied by CDHSG stage. CONCLUSION: Newborns with CDH have lower SpO2 and lower, CDHSG stage specific, tidal volumes than control infants. The nitrofen model of CDH reflects these differences. Rodent models may be useful in studying therapeutic ventilatory strategies for CDH infants.


Asunto(s)
Hernias Diafragmáticas Congénitas/terapia , Respiración Artificial , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Pulmón , Gravedad del Paciente , Estudios Retrospectivos , Roedores , Volumen de Ventilación Pulmonar
11.
Matrix Biol ; 111: 53-75, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671866

RESUMEN

Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.


Asunto(s)
Metabolismo Energético , Hialuronano Sintasas , Ácido Hialurónico , Hipertensión Pulmonar , Regiones no Traducidas 3'/genética , Animales , Proliferación Celular , Metabolismo Energético/genética , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/biosíntesis , Hipertensión Pulmonar/enzimología , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/enzimología
12.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35420997

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional coactivators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin-treated (BLM-treated) mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis, as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression, and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis and providing a potentially novel pathway for targeting in IPF therapy.


Asunto(s)
Proteínas de Homeodominio , Fibrosis Pulmonar Idiopática , Animales , Fibrosis , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Ratones , Factores de Transcripción/genética
13.
EBioMedicine ; 86: 104351, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375315

RESUMEN

BACKGROUND: Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19. METHODS: Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation. FINDINGS: We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization. INTERPRETATION: Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19. FUNDING: National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Humanos , Colágeno/metabolismo , COVID-19/complicaciones , COVID-19/patología , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo
14.
Dis Model Mech ; 12(5)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036697

RESUMEN

Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome that predominantly affects male smokers or ex-smokers and it has a mortality rate of 55% and a median survival of 5 years. Pulmonary hypertension (PH) is a frequently fatal complication of CPFE. Despite this dismal prognosis, no curative therapies exist for patients with CPFE outside of lung transplantation and no therapies are recommended to treat PH. This highlights the need to develop novel treatment approaches for CPFE. Studies from our group have demonstrated that both adenosine and its receptor ADORA2B are elevated in chronic lung diseases. Activation of ADORA2B leads to elevated levels of hyaluronan synthases (HAS) and increased hyaluronan, a glycosaminoglycan that contributes to chronic lung injury. We hypothesize that ADORA2B and hyaluronan contribute to CPFE. Using isolated CPFE lung tissue, we characterized expression levels of ADORA2B and HAS. Next, using a unique mouse model of experimental lung injury that replicates features of CPFE, namely airspace enlargement, PH and fibrotic deposition, we investigated whether 4MU, a HAS inhibitor, was able to inhibit features of CPFE. Increased protein levels of ADORA2B and HAS3 were detected in CPFE and in our experimental model of CPFE. Treatment with 4MU was able to attenuate PH and fibrosis but not airspace enlargement. This was accompanied by a reduction of HAS3-positive macrophages. We have generated pre-clinical data demonstrating the capacity of 4MU, an FDA-approved drug, to attenuate features of CPFE in an experimental model of chronic lung injury.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Adenosina/efectos adversos , Ácido Hialurónico/efectos adversos , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/patología , Agonistas del Receptor de Adenosina A2/farmacología , Adenosina Desaminasa/metabolismo , Animales , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Humanos , Hialuronano Sintasas/metabolismo , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Macrófagos/metabolismo , Ratones , Receptor de Adenosina A2B/metabolismo
15.
J Clin Invest ; 129(5): 1984-1999, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30830875

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and deadly disease with a poor prognosis and few treatment options. Pathological remodeling of the extracellular matrix (ECM) by myofibroblasts is a key factor that drives disease pathogenesis, although the underlying mechanisms remain unknown. Alternative polyadenylation (APA) has recently been shown to play a major role in cellular responses to stress by driving the expression of fibrotic factors and ECMs through altering microRNA sensitivity, but a connection to IPF has not been established. Here, we demonstrate that CFIm25, a global regulator of APA, is down-regulated in the lungs of patients with IPF and mice with pulmonary fibrosis, with its expression selectively reduced in alpha-smooth muscle actin (α-SMA) positive fibroblasts. Following the knockdown of CFIm25 in normal human lung fibroblasts, we identified 808 genes with shortened 3'UTRs, including those involved in the transforming growth factor-ß signaling pathway, the Wnt signaling pathway, and cancer pathways. The expression of key pro-fibrotic factors can be suppressed by CFIm25 overexpression in IPF fibroblasts. Finally, we demonstrate that deletion of CFIm25 in fibroblasts or myofibroblast precursors using either the Col1a1 or the Foxd1 promoter enhances pulmonary fibrosis after bleomycin exposure in mice. Taken together, our results identified CFIm25 down-regulation as a novel mechanism to elevate pro-fibrotic gene expression in pulmonary fibrosis.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poliadenilación , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/fisiopatología , Regiones no Traducidas 3' , Actinas/metabolismo , Adulto , Anciano , Animales , Bleomicina/farmacología , Progresión de la Enfermedad , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Persona de Mediana Edad , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
16.
Arthritis Rheumatol ; 70(10): 1673-1684, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29771006

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc; scleroderma) is a chronic disease that affects the skin and various internal organs. Dermal fibrosis is a major component of this disease. The mechanisms that promote dermal fibrosis remain elusive. Elevations in tissue adenosine levels and the subsequent engagement of the profibrotic A2B adenosine receptor (ADORA2B) have been shown to regulate fibrosis in multiple organs including the lung, kidney, and penis; however, the role of ADORA2B in dermal fibrosis has not been investigated. We undertook this study to test our hypothesis that elevated expression of ADORA2B in the skin drives the development of dermal fibrosis. METHODS: We assessed the involvement of ADORA2B in the regulation of dermal fibrosis using a well-established mouse model of dermal fibrosis. Using an orally active ADORA2B antagonist, we demonstrated how inhibition of ADORA2B results in reduced dermal fibrosis in 2 distinct experimental models. Finally, using human dermal fibroblasts, we characterized the expression of adenosine receptors. RESULTS: We demonstrated that levels of ADORA2B were significantly elevated in dermal fibrosis and that the therapeutic blockade of this receptor in vivo using an ADORA2B antagonist could reduce the production of profibrotic mediators in the skin and attenuate dermal fibrosis. Antagonism of ADORA2B resulted in reduced numbers of arginase-expressing macrophages and myofibroblasts and in reduced levels of the extracellular matrix proteins fibronectin, collagen, and hyaluronan. CONCLUSION: These findings identify ADORA2B as a potential profibrotic regulator in dermal fibrosis and suggest that ADORA2B antagonism may be a useful approach for the treatment of SSc.


Asunto(s)
Fibrosis/tratamiento farmacológico , Antagonistas de Receptores Purinérgicos P1/farmacología , Esclerodermia Sistémica/tratamiento farmacológico , Enfermedades de la Piel/tratamiento farmacológico , Piel/patología , Animales , Bleomicina , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibrosis/inducido químicamente , Fibrosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerodermia Sistémica/inducido químicamente , Esclerodermia Sistémica/patología , Piel/efectos de los fármacos , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/patología
17.
Front Physiol ; 9: 555, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910735

RESUMEN

Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.

18.
Can Respir J ; 2017: 1430350, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286407

RESUMEN

Pulmonary hypertension (PH) is commonly present in patients with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) or Idiopathic Pulmonary Fibrosis (IPF) where it is classified as Group III PH by the World Health Organization (WHO). PH has been identified to be present in as much as 40% of patients with COPD or IPF and it is considered as one of the principal predictors of mortality in patients with COPD or IPF. However, despite the prevalence and fatal consequences of PH in the setting of chronic lung diseases, there are limited therapies available for patients with Group III PH, with lung transplantation remaining as the most viable option. This highlights our need to enhance our understanding of the molecular mechanisms that lead to the development of Group III PH. In this review we have chosen to focus on the current understating of PH in IPF, we will revisit the main mediators that have been shown to play a role in the development of the disease. We will also discuss the experimental models available to study PH associated with lung fibrosis and address the role of the right ventricle in IPF. Finally we will summarize the current available treatment options for Group III PH outside of lung transplantation.


Asunto(s)
Hipertensión Pulmonar/etiología , Fibrosis Pulmonar Idiopática/complicaciones , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Prevalencia
19.
Br J Pharmacol ; 174(19): 3284-3301, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688167

RESUMEN

BACKGROUND AND PURPOSE: Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH: Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS: In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS: Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.


Asunto(s)
Ácido Hialurónico/antagonistas & inhibidores , Himecromona/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Hialuronano Sintasas/genética , Ácido Hialurónico/metabolismo , Himecromona/farmacología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/citología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Serina Endopeptidasas/metabolismo , Remodelación Vascular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda