Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Genet Metab ; 142(4): 108516, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941880

RESUMEN

Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.

2.
Mol Genet Metab ; 142(3): 108508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820906

RESUMEN

Short-chain enoyl-coA hydratase (SCEH) deficiency due to biallelic pathogenic ECHS1 variants was first reported in 2014 in association with Leigh syndrome (LS) and increased S-(2-carboxypropyl)cysteine excretion. It is potentially treatable with a valine-restricted, high-energy diet and emergency regimen. Recently, Simon et al. described four Samoan children harbouring a hypomorphic allele (c.489G > A, p.Pro163=) associated with reduced levels of normally-spliced mRNA. This synonymous variant, missed on standard genomic testing, is prevalent in the Samoan population (allele frequency 0.17). Patients with LS and one ECHS1 variant were identified in NZ and Australian genomic and clinical databases. ECHS1 sequence data were interrogated for the c.489G > A variant and clinical data were reviewed. Thirteen patients from 10 families were identified; all had Pacific ancestry including Samoan, Maori, Cook Island Maori, and Tokelauan. All developed bilateral globus pallidi lesions, excluding one pre-symptomatic infant. Symptom onset was in early childhood, and was triggered by illness or starvation in 9/13. Four of 13 had exercise-induced dyskinesia, 9/13 optic atrophy and 6/13 nystagmus. Urine S-(2-carboxypropyl)cysteine-carnitine and other SCEH-related metabolites were normal or mildly increased. Functional studies demonstrated skipping of exon four and markedly reduced ECHS1 protein. These data provide further support for the pathogenicity of this ECHS1 variant which is also prevalent in Maori, Cook Island Maori, and Tongan populations (allele frequency 0.14-0.24). It highlights the need to search for a second variant in apparent heterozygotes with an appropriate phenotype, and has implications for genetic counselling in family members who are heterozygous for the more severe ECHS1 alleles. SYNOPSIS: Short-chain enoyl-CoA hydratase deficiency is a frequent cause of Leigh-like disease in Maori and wider-Pacific populations, due to the high carrier frequency of a hypomorphic ECHS1 variant c.489G > A, p.[Pro163=, Phe139Valfs*65] that may be overlooked by standard genomic testing.


Asunto(s)
Enoil-CoA Hidratasa , Enfermedad de Leigh , Humanos , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/deficiencia , Masculino , Femenino , Lactante , Australia/epidemiología , Enfermedad de Leigh/genética , Preescolar , Niño , Mutación , Nueva Zelanda , Alelos , Frecuencia de los Genes
3.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36117209

RESUMEN

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Asunto(s)
Apraxias , Trastornos del Habla , Niño , Humanos , Trastornos del Habla/genética , Apraxias/genética , Mapeo Cromosómico , Causalidad , Encéfalo , N-Metiltransferasa de Histona-Lisina
4.
Genet Med ; 25(6): 100314, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305855

RESUMEN

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Asunto(s)
Fallo Hepático Agudo , Fallo Hepático , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Acetilcisteína/uso terapéutico , Fallo Hepático/tratamiento farmacológico , Fallo Hepático/genética , Fallo Hepático Agudo/tratamiento farmacológico , Fallo Hepático Agudo/genética , Proteínas Mitocondriales/genética , Mutación , Estudios Retrospectivos , ARNt Metiltransferasas/genética
5.
Hum Mol Genet ; 29(15): 2568-2578, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32667670

RESUMEN

Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.


Asunto(s)
Codón sin Sentido/genética , Trastornos del Neurodesarrollo/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Trastornos del Habla/genética , Línea Celular , Preescolar , Redes Reguladoras de Genes/genética , Humanos , Lactante , Mutación con Pérdida de Función/genética , Masculino , Trastornos del Neurodesarrollo/patología , Degradación de ARNm Mediada por Codón sin Sentido/genética , Empalme del ARN/genética , Mutación Silenciosa/genética , Trastornos del Habla/patología
6.
Pediatr Nephrol ; 37(10): 2369-2374, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35211794

RESUMEN

BACKGROUND: Intronic WT1 mutations are usually causative of Frasier syndrome with focal segmental glomerulosclerosis as the characteristic nephropathy. Membranoproliferative glomerulonephritis is not commonly associated with disorders of sex development but has been recently identified as a WT1-associated nephropathy, but usually in cases of exonic mutations in either isolated Wilms tumor or Denys-Drash syndrome. METHODS: The clinical and genetic data from 3 individuals are reported. RESULTS: This report describes the kidney manifestations in 3 individuals from 2 unrelated families with Frasier syndrome intronic WT1 mutations, noting that 2 of the 3 individuals have histologically confirmed membranoproliferative glomerulonephritis. CONCLUSIONS: These case reports support expansion of the clinical spectrum of the kidney phenotypes associated with Frasier syndrome providing evidence of an association between WT1 mutation and an immune complex-related membranoproliferative glomerulonephritis. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Síndrome de Denys-Drash , Glomerulonefritis Membranoproliferativa , Disgenesia Gonadal , Neoplasias Renales , Tumor de Wilms , Síndrome de Denys-Drash/genética , Síndrome de Denys-Drash/patología , Síndrome de Frasier/genética , Genes del Tumor de Wilms , Glomerulonefritis Membranoproliferativa/genética , Disgenesia Gonadal/genética , Humanos , Neoplasias Renales/genética , Mutación , Proteínas WT1/genética , Tumor de Wilms/genética
7.
Intern Med J ; 52(1): 110-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34505344

RESUMEN

This document provides consensus-based recommendations for general physicians and primary care physicians who diagnose and manage patients with mitochondrial diseases (MD). It builds on previous international guidelines, with particular emphasis on clinical management in the Australian setting. This statement was prepared by a working group of medical practitioners, nurses and allied health professionals with clinical expertise and experience in managing Australian patients with MD. As new treatments and management plans emerge, these consensus-based recommendations will continue to evolve, but current standards of care are summarised in this document.


Asunto(s)
Enfermedades Mitocondriales , Nivel de Atención , Australia/epidemiología , Consenso , Guías como Asunto , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Sociedades Médicas
8.
Am J Hum Genet ; 103(1): 125-130, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29909962

RESUMEN

Mendelian disorders of cholesterol biosynthesis typically result in multi-system clinical phenotypes, underlining the importance of cholesterol in embryogenesis and development. FDFT1 encodes for an evolutionarily conserved enzyme, squalene synthase (SS, farnesyl-pyrophosphate farnesyl-transferase 1), which catalyzes the first committed step in cholesterol biosynthesis. We report three individuals with profound developmental delay, brain abnormalities, 2-3 syndactyly of the toes, and facial dysmorphisms, resembling Smith-Lemli-Opitz syndrome, the most common cholesterol biogenesis defect. The metabolite profile in plasma and urine suggested that their defect was at the level of squalene synthase. Whole-exome sequencing was used to identify recessive disease-causing variants in FDFT1. Functional characterization of one variant demonstrated a partial splicing defect and altered promoter and/or enhancer activity, reflecting essential mechanisms for regulating cholesterol biosynthesis/uptake in steady state.


Asunto(s)
Colesterol/genética , Farnesil Difosfato Farnesil Transferasa/genética , Anomalías Musculoesqueléticas/genética , Niño , Preescolar , Elementos de Facilitación Genéticos/genética , Femenino , Humanos , Lactante , Masculino , Regiones Promotoras Genéticas/genética , Empalme del ARN/genética , Síndrome de Smith-Lemli-Opitz/genética , Secuenciación del Exoma/métodos
9.
Am J Med Genet A ; 185(8): 2445-2454, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34032352

RESUMEN

Smith-Kingsmore Syndrome (SKS) is a rare genetic syndrome associated with megalencephaly, a variable intellectual disability, autism spectrum disorder, and MTOR gain of function variants. Only 30 patients with MTOR missense variants are published, including 14 (47%) with the MTOR c.5395G>A p.(Glu1799Lys) variant. Limited phenotypic data impacts the quality of information delivered to families and the robustness of interpretation of novel MTOR missense variation. This study aims to improve our understanding of the SKS phenotype through the investigation of 16 further patients with the MTOR c.5395G>A p.(Glu1799Lys) variant. Through the careful phenotypic evaluation of these 16 patients and integration with data from 14 previously reported patients, we have defined major (100% patients) and frequent (>15%) SKS clinical characteristics and, using these data, proposed guidance for evidence-based management. In addition, in the absence of functional studies, we suggest that the combination of the SKS major clinical features of megalencephaly (where the head circumference is at least 3SD) and an intellectual disability with a de novo MTOR missense variant (absent from population databases) should be considered diagnostic for SKS.


Asunto(s)
Alelos , Estudios de Asociación Genética , Mutación Missense , Fenotipo , Serina-Treonina Quinasas TOR/genética , Adolescente , Sustitución de Aminoácidos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Niño , Preescolar , Facies , Femenino , Sitios Genéticos , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Megalencefalia/diagnóstico , Megalencefalia/genética , Síndrome
10.
J Inherit Metab Dis ; 44(4): 903-915, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33634872

RESUMEN

Carnitine acyl-carnitine translocase deficiency (CACTD) is a rare autosomal recessive disorder of mitochondrial long-chain fatty-acid transport. Most patients present in the first 2 days of life, with hypoketotic hypoglycaemia, hyperammonaemia, cardiomyopathy or arrhythmia, hepatomegaly and elevated liver enzymes. Multi-centre international retrospective chart review of clinical presentation, biochemistry, treatment modalities including diet, subsequent complications, and mode of death of all patients. Twenty-three patients from nine tertiary metabolic units were identified. Seven attenuated patients of Pakistani heritage, six of these homozygous c.82G>T, had later onset manifestations and long-term survival without chronic hyperammonemia. Of the 16 classical cases, 15 had cardiac involvement at presentation comprising cardiac arrhythmias (9/15), cardiac arrest (7/15), and cardiac hypertrophy (9/15). Where recorded, ammonia levels were elevated in all but one severe case (13/14 measured) and 14/16 had hypoglycaemia. Nine classical patients survived longer-term-most with feeding difficulties and cognitive delay. Hyperammonaemia appears refractory to ammonia scavenger treatment and carglumic acid, but responds well to high glucose delivery during acute metabolic crises. High-energy intake seems necessary to prevent decompensation. Anaplerosis utilising therapeutic d,l-3-hydroxybutyrate, Triheptanoin and increased protein intake, appeared to improve chronic hyperammonemia and metabolic stability where trialled in individual cases. CACTD is a rare disorder of fatty acid oxidation with a preponderance to severe cardiac dysfunction. Long-term survival is possible in classical early-onset cases with long-chain fat restriction, judicious use of glucose infusions, and medium chain triglyceride supplementation. Adjunctive therapies supporting anaplerosis may improve longer-term outcomes.


Asunto(s)
Carnitina Aciltransferasas/deficiencia , Carnitina/uso terapéutico , Dieta con Restricción de Grasas , Errores Innatos del Metabolismo Lipídico/dietoterapia , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Suplementos Dietéticos , Humanos , Recién Nacido , Internacionalidad , Estudios Retrospectivos , Tasa de Supervivencia
11.
J Inherit Metab Dis ; 44(1): 148-163, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32681750

RESUMEN

Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.


Asunto(s)
Manejo de la Enfermedad , Galactosa/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Adulto , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Fisura del Paladar/complicaciones , Fisura del Paladar/patología , Consenso , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Enfermedad del Almacenamiento de Glucógeno/enzimología , Humanos , Hipoglucemia/complicaciones , Lactante , Cooperación Internacional , Enfermedades Musculares/complicaciones , Enfermedades Musculares/patología
12.
J Pediatr Psychol ; 46(2): 208-218, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33296470

RESUMEN

OBJECTIVE: Families of children with phenylketonuria (PKU) report child emotional and behavioral problems, parenting stress, and parenting difficulties, which are associated with worse health-related quality of life. This study aimed to examine acceptability and feasibility of a brief, group-based parenting program (Healthy Living Triple P) for families of children with PKU. METHODS: An uncontrolled nonrandomized trial design was used. Families of children aged 2-12 years (N = 17) completed questionnaire measures assessing child behavior and impact of PKU on quality of life (primary outcomes), and parenting behavior, self-efficacy and stress, and children's behavioral and emotional adjustment (secondary outcomes). Routinely collected blood phenylalanine (Phe) levels were obtained from the treating team. Parents selected two child behaviors as targets for change. The intervention comprised two, 2-hr group sessions delivered face-to-face or online. Assessment was repeated at 4-week postintervention (T2) and 4-month follow-up (T3). RESULTS: Attrition was low and parent satisfaction with the intervention (face-to-face and online) was high. All families achieved success with one or both child behavior goals, and 75% of families achieved 100% success with both behavior goals by T3; however, there was no change in health-related quality of life. There were moderate improvements in parent-reported ineffective parenting (total score, d = 0.87, 95% CI -1.01 to 2.75) and laxness (d = 0.59, 95% CI -1.27 to 2.46), but no effects on parenting stress or children's adjustment. Phe levels improved by 6month post-intervention for children with elevated preintervention levels. CONCLUSIONS: Results support intervention acceptability and feasibility. A randomized controlled trial is warranted to establish intervention efficacy.


Asunto(s)
Fenilcetonurias , Calidad de Vida , Niño , Conducta Infantil , Preescolar , Humanos , Responsabilidad Parental , Padres
13.
Genet Med ; 22(7): 1254-1261, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32313153

RESUMEN

PURPOSE: The utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated. METHODS: An Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants. RESULTS: A definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD. CONCLUSION: GS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Australia , Niño , Mapeo Cromosómico , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación
14.
Child Care Health Dev ; 46(1): 56-65, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782540

RESUMEN

OBJECTIVE: This study aimed to assess the impact of phenylketonuria (PKU) and its treatment on parent and child health-related quality of life (HRQoL) and to identify the parenting-related correlates of parent and child HRQoL, as well as metabolic control. METHODS: Eighteen mothers of 2- to 12-year-old children with PKU participated and completed a series of self-report questionnaires including the PKU Impact and Treatment Quality of Life Questionnaire (PKU-QOL). RESULTS: Mothers reported that the most significant impact of PKU on HRQoL was in relation to the impact of their child's anxiety during blood tests on their own HRQoL and guilt related to poor adherence to dietary restrictions and supplementation regimens. Higher reported intensity of child emotional and behavioural difficulties and parenting stress were associated with higher scores for PKU symptoms on the PKU-QOL, higher scores for emotional, social, and overall impact of PKU, and higher scores for the impact of dietary restriction. Where mothers reported greater use of overreactivity as a parenting strategy, children tended to have better lifetime phenylalanine levels; however, the overall impact of PKU and the impact of supplement administration on mothers' HRQoL were worse for these families. CONCLUSIONS: These findings have implications for a holistic family-centred approach to the care of children with PKU and their families.


Asunto(s)
Madres/psicología , Responsabilidad Parental/psicología , Fenilcetonurias/psicología , Funcionamiento Psicosocial , Calidad de Vida/psicología , Adulto , Ansiedad/epidemiología , Australia , Niño , Preescolar , Estudios de Cohortes , Femenino , Culpa , Humanos , Masculino , Fenilcetonurias/complicaciones , Fenilcetonurias/terapia , Estrés Psicológico/epidemiología , Encuestas y Cuestionarios
15.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817854

RESUMEN

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Animales , Biopsia , Células CHO , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Cricetulus , Femenino , Humanos , Masculino , Mutación
16.
Am J Hum Genet ; 98(2): 347-57, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26805781

RESUMEN

The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.


Asunto(s)
Arritmias Cardíacas/genética , Debilidad Muscular/genética , Rabdomiólisis/genética , Alelos , Árabes/genética , Arritmias Cardíacas/diagnóstico , Secuencia de Bases , Niño , Preescolar , Estrés del Retículo Endoplásmico/genética , Exoma , Exones , Femenino , Eliminación de Gen , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Hispánicos o Latinos/genética , Homocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Debilidad Muscular/diagnóstico , Linaje , Rabdomiólisis/diagnóstico , Población Blanca/genética
18.
J Inherit Metab Dis ; 42(1): 29-48, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30740740

RESUMEN

Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Oftalmopatías/diagnóstico , Oftalmopatías/patología , Animales , Glicosilación , Humanos
19.
J Inherit Metab Dis ; 42(1): 5-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30740725

RESUMEN

Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Fosfotransferasas (Fosfomutasas)/deficiencia , Estudios de Seguimiento , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda