Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Orthopedics ; 22(2): 265-6, 272, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10037344

RESUMEN

Distinguishing primary lymphoma of bone from disseminated lymphoma and similar appearing bone malignancies is important because of its better prognosis. It is also important to remember how indolent the process can be even in the face of massive bone involvement. Early recognition of this rare entity can increase patient survival.


Asunto(s)
Neoplasias Óseas/diagnóstico , Linfoma no Hodgkin/diagnóstico , Huesos Pélvicos , Biopsia , Neoplasias Óseas/complicaciones , Diagnóstico Diferencial , Femenino , Humanos , Linfoma no Hodgkin/complicaciones , Imagen por Resonancia Magnética , Persona de Mediana Edad , Dolor/etiología
2.
Growth Factors ; 14(4): 229-41, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9386988

RESUMEN

Vascular endothelial growth factor (VEGF) is a potent and specific endothelial cell cytokine that can be up-regulated by hypoxia. There is evidence that VEGF is a significant mediator in retinal neovascular diseases and other disorders in which hypoxia is believed to influence the pathogenesis. Here we demonstrate the spatial relationships among areas of retinal non-perfusion, VEGF protein and vascular endothelial cells throughout the retina, and relate these results to cellular distribution of VEGF in cross section. Newborn albino rats were oxygen-injured by cycles of alternating 50% and 10% oxygen for 14 days and then placed in room air. On days 16, 21 and 26, oxygen-injured and control (raised in room air) rats were sacrificed, enucleated and retinas were dissected and fixed for whole mount immunostaining for VEGF or embedding in glycol methacrylate for VEGF immunohistochemistry. Intact eyes taken on days 16 and 20 were processed similarly. Vascular endothelial cells were demonstrated by staining whole-mounted retinas for adenosine diphosphatase (ADPase) activity. Preretinal neovascular growths (i.e., abnormal vessels extending from the retina into the vitreous) were VEGF-positive. There was also a pan-retinal distribution of non-endothelial cells that were VEGF-positive in both room air and oxygen-injured rats, with stronger immunostaining in day 16 oxygen-injured retinas. In cross-section, VEGF staining was confirmed in preretinal growths, normal retinal vessels, cells in the inner nuclear layer (primarily Müller cells) and ganglion cells. Retinas which had been incubated with nonimmune IgG or absorbed anti-VEGF antibody showed little or no staining. In conclusion, we have identified cells of the inner retina which express VEGF. The production of VEGF by these cells--in particular, Müller cells--may promote preretinal neovascularization in oxygen-injured eyes. We have found, moreover, that the combination of immunohistochemistry and ADPase staining of whole mount preparations is a unique and powerful tool for evaluating relationships between presumed areas of retinal ischemia, VEGF (and other cytokines) and retinal blood vessels, within an entire retina. This approach can be used to study any proliferative retinal disorders in which VEGF is a potential component of the pathogenesis.


Asunto(s)
Factores de Crecimiento Endotelial/análisis , Endotelio Vascular/química , Linfocinas/análisis , Oxígeno/farmacología , Retina/química , Neovascularización Retiniana/metabolismo , Animales , Animales Recién Nacidos , Apirasa/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda